Learning to Adapt: Communication Load Balancing via Adaptive Deep Reinforcement Learning
Di Wu
Yi Tian Xu
Jimmy Li
M. Jenkin
Ekram Hossain
Seowoo Jang
Yan Xin
Charlie Zhang
The association of mobile devices with network resources (e.g., base stations, frequency bands/channels), known as load balancing, is critic… (voir plus)al to reduce communication traffic congestion and network performance. Reinforcement learning (RL) has shown to be effective for communication load balancing and achieves better performance than currently used rule-based methods, especially when the traffic load changes quickly. However, RL-based methods usually need to interact with the environment for a large number of time steps to learn an effective policy and can be difficult to tune. In this work, we aim to improve the data efficiency of RL-based solutions to make them more suitable and applicable for real-world applications. Specifically, we propose a simple, yet efficient and effective deep RL-based wireless network load balancing framework. In this solution, a set of good initialization values for control actions are selected with some cost-efficient approach to center the training of the RL agent. Then, a deep RL-based agent is trained to find offsets from the initialization values that optimize the load balancing problem. Experimental evaluation on a set of dynamic traffic scenarios demonstrates the effectiveness and efficiency of the proposed method.
A Machine Learning Based Approach to Detect Machine Learning Design Patterns
Weitao Pan
Hironori Washizaki
Nobukazu Yoshioka
Yoshiaki Fukazawa
Yann‐Gaël Guéhéneuc
As machine learning expands to various domains, the demand for reusable solutions to similar problems increases. Machine learning design pat… (voir plus)terns are reusable solutions to design problems of machine learning applications. They can significantly enhance programmers' productivity in programming that requires machine learning algorithms. Given the critical role of machine learning design patterns, the automated detection of them becomes equally vital. However, identifying design patterns can be time-consuming and error-prone. We propose an approach to detect their occurrences in Python files. Our approach uses an Abstract Syntax Tree (AST) of Python files to build a corpus of data and train a refined Text-CNN model to automatically identify machine learning design patterns. We empirically validate our approach by conducting an exploratory study to detect four common machine learning design patterns: Embedding, Multilabel, Feature Cross, and Hashed Feature. We manually label 450 Python code files containing these design patterns from repositories of projects in GitHub. Our approach achieves accuracy values ranging from 80 % to 92% for each of the four patterns.
Step-GRAND: A Low Latency Universal Soft-Input Decoder
Syed Mohsin Abbas
Marwan Jalaleddine
Chi-Ying Tsui
GRAND features both soft-input and hard-input variants that are well suited to efficient hardware implementations that can be characterized … (voir plus)with achievable average and worst-case decoding latency. This paper introduces step-GRAND, a soft-input variant of GRAND that, in addition to achieving appealing average decoding latency, also reduces the worst-case decoding latency of the corresponding hardware implementation. The hardware implementation results demonstrate that the proposed step-GRAND can decode CA-polar code (128,105+11) with an average information throughput of 47.7 Gbps at the target FER of
Working Backwards: Learning to Place by Picking
Oliver Limoyo
Abhisek Konar
Trevor Ablett
Jonathan Kelly
Francois Hogan
We present placing via picking (PvP), a method to autonomously collect real-world demonstrations for a family of placing tasks in which obje… (voir plus)cts must be manipulated to specific, contact-constrained locations. With PvP, we approach the collection of robotic object placement demonstrations by reversing the grasping process and exploiting the inherent symmetry of the pick and place problems. Specifically, we obtain placing demonstrations from a set of grasp sequences of objects initially located at their target placement locations. Our system can collect hundreds of demonstrations in contact-constrained environments without human intervention using two modules: compliant control for grasping and tactile regrasping. We train a policy directly from visual observations through behavioural cloning, using the autonomously-collected demonstrations. By doing so, the policy can generalize to object placement scenarios outside of the training environment without privileged information (e.g., placing a plate picked up from a table). We validate our approach in home robot scenarios that include dishwasher loading and table setting. Our approach yields robotic placing policies that outperform policies trained with kinesthetic teaching, both in terms of success rate and data efficiency, while requiring no human supervision.
Working Backwards: Learning to Place by Picking
Oliver Limoyo
Abhisek Konar
Trevor Ablett
Jonathan Kelly
Francois Hogan
We present placing via picking (PvP), a method to autonomously collect real-world demonstrations for a family of placing tasks in which obje… (voir plus)cts must be manipulated to specific, contact-constrained locations. With PvP, we approach the collection of robotic object placement demonstrations by reversing the grasping process and exploiting the inherent symmetry of the pick and place problems. Specifically, we obtain placing demonstrations from a set of grasp sequences of objects initially located at their target placement locations. Our system can collect hundreds of demonstrations in contact-constrained environments without human intervention using two modules: compliant control for grasping and tactile regrasping. We train a policy directly from visual observations through behavioural cloning, using the autonomously-collected demonstrations. By doing so, the policy can generalize to object placement scenarios outside of the training environment without privileged information (e.g., placing a plate picked up from a table). We validate our approach in home robot scenarios that include dishwasher loading and table setting. Our approach yields robotic placing policies that outperform policies trained with kinesthetic teaching, both in terms of success rate and data efficiency, while requiring no human supervision.
Decision Diagrams in Space!
Isaac Rudich
Manuel L'opez-Ib'anez
Michael Romer
Louis-Martin Rousseau
An Exact Framework for Solving the Space-Time Dependent TSP
Isaac Rudich
Manuel L'opez-Ib'anez
Michael Romer
Louis-Martin Rousseau
An Exact Framework for Solving the Space-Time Dependent TSP
Isaac Rudich
Manuel L'opez-Ib'anez
Michael Romer
Louis-Martin Rousseau
Many real-world scenarios involve solving bi-level optimization problems in which there is an outer discrete optimization problem, and an in… (voir plus)ner problem involving expensive or black-box computation. This arises in space-time dependent variants of the Traveling Salesman Problem, such as when planning space missions that visit multiple astronomical objects. Planning these missions presents significant challenges due to the constant relative motion of the objects involved. There is an outer combinatorial problem of finding the optimal order to visit the objects and an inner optimization problem that requires finding the optimal departure time and trajectory to travel between each pair of objects. The constant motion of the objects complicates the inner problem, making it computationally expensive. This paper introduces a novel framework utilizing decision diagrams (DDs) and a DD-based branch-and-bound technique, Peel-and-Bound, to achieve exact solutions for such bi-level optimization problems, assuming sufficient inner problem optimizer quality. The framework leverages problem-specific knowledge to expedite search processes and minimize the number of expensive evaluations required. As a case study, we apply this framework to the Asteroid Routing Problem (ARP), a benchmark problem in global trajectory optimization. Experimental results demonstrate the framework's scalability and ability to generate robust heuristic solutions for ARP instances. Many of these solutions are exact, contingent on the assumed quality of the inner problem's optimizer.
Can We Learn Communication-Efficient Optimizers?
Charles-Étienne Joseph
Benjamin Thérien
Abhinav Moudgil
Boris Knyazev
Advancing Clinical Psychiatry: Integration of Clinical and Omics Data Using Machine Learning
Bill Qi
Automatic Head and Neck Tumor segmentation and outcome prediction relying on FDG-PET/CT images: Findings from the second edition of the HECKTOR challenge
Vincent Andrearczyk
Valentin Oreiller
Sarah Boughdad
Catherine Cheze Le Rest
Olena Tankyevych
Hesham M. Elhalawani
Mario Jreige
John O. Prior
Dimitris Visvikis
Mathieu Hatt
Adrien Depeursinge
Balaur: Language Model Pretraining with Lexical Semantic Relations
Andrei Mircea