Publications

Bringing SAM to new heights: Leveraging elevation data for tree crown segmentation from drone imagery
Mélisande Teng
Etienne Lalibert'e
Information on trees at the individual level is crucial for monitoring forest ecosystems and planning forest management. Current monitoring … (voir plus)methods involve ground measurements, requiring extensive cost, time and labor. Advances in drone remote sensing and computer vision offer great potential for mapping individual trees from aerial imagery at broad-scale. Large pre-trained vision models, such as the Segment Anything Model (SAM), represent a particularly compelling choice given limited labeled data. In this work, we compare methods leveraging SAM for the task of automatic tree crown instance segmentation in high resolution drone imagery in three use cases: 1) boreal plantations, 2) temperate forests and 3) tropical forests. We also study the integration of elevation data into models, in the form of Digital Surface Model (DSM) information, which can readily be obtained at no additional cost from RGB drone imagery. We present BalSAM, a model leveraging SAM and DSM information, which shows potential over other methods, particularly in the context of plantations. We find that methods using SAM out-of-the-box do not outperform a custom Mask R-CNN, even with well-designed prompts. However, efficiently tuning SAM end-to-end and integrating DSM information are both promising avenues for tree crown instance segmentation models.
Continual Learning in Vision-Language Models via Aligned Model Merging
Ghada Sokar
Anurag Arnab
Ahmet Iscen
Cordelia Schmid
Continual learning is conventionally tackled through sequential fine-tuning, a process that, while enabling adaptation, inherently favors pl… (voir plus)asticity over the stability needed to retain prior knowledge. While existing approaches attempt to mitigate catastrophic forgetting, a bias towards recent tasks persists as they build upon this sequential nature. In this work we present a new perspective based on model merging to maintain stability while still retaining plasticity. Rather than just sequentially updating the model weights, we propose merging newly trained task parameters with previously learned ones, promoting a better balance. To maximize the effectiveness of the merging process, we propose a simple mechanism that promotes learning aligned weights with previous ones, thereby avoiding interference when merging. We evaluate this approach on large Vision-Language Models (VLMs), and demonstrate its effectiveness in reducing forgetting, increasing robustness to various task orders and similarities, and improving generalization.
Ctrl-Crash: Controllable Diffusion for Realistic Car Crashes
Video diffusion techniques have advanced significantly in recent years; however, they struggle to generate realistic imagery of car crashes … (voir plus)due to the scarcity of accident events in most driving datasets. Improving traffic safety requires realistic and controllable accident simulations. To tackle the problem, we propose Ctrl-Crash, a controllable car crash video generation model that conditions on signals such as bounding boxes, crash types, and an initial image frame. Our approach enables counterfactual scenario generation where minor variations in input can lead to dramatically different crash outcomes. To support fine-grained control at inference time, we leverage classifier-free guidance with independently tunable scales for each conditioning signal. Ctrl-Crash achieves state-of-the-art performance across quantitative video quality metrics (e.g., FVD and JEDi) and qualitative measurements based on a human-evaluation of physical realism and video quality compared to prior diffusion-based methods.
DIMCIM: A Quantitative Evaluation Framework for Default-mode Diversity and Generalization in Text-to-Image Generative Models
Revant Teotia
Candace Ross
Karen Ullrich
Sumit Chopra
Melissa Hall
Matthew J. Muckley
Recent advances in text-to-image (T2I) models have achieved impressive quality and consistency. However, this has come at the cost of repres… (voir plus)entation diversity. While automatic evaluation methods exist for benchmarking model diversity, they either require reference image datasets or lack specificity about the kind of diversity measured, limiting their adaptability and interpretability. To address this gap, we introduce the Does-it/Can-it framework, DIM-CIM, a reference-free measurement of default-mode diversity ("Does" the model generate images with expected attributes?) and generalization capacity ("Can" the model generate diverse attributes for a particular concept?). We construct the COCO-DIMCIM benchmark, which is seeded with COCO concepts and captions and augmented by a large language model. With COCO-DIMCIM, we find that widely-used models improve in generalization at the cost of default-mode diversity when scaling from 1.5B to 8.1B parameters. DIMCIM also identifies fine-grained failure cases, such as attributes that are generated with generic prompts but are rarely generated when explicitly requested. Finally, we use DIMCIM to evaluate the training data of a T2I model and observe a correlation of 0.85 between diversity in training images and default-mode diversity. Our work provides a flexible and interpretable framework for assessing T2I model diversity and generalization, enabling a more comprehensive understanding of model performance.
Generalizable, real-time neural decoding with hybrid state-space models
Avery Hee-Woon Ryoo
Nanda H Krishna
Mehdi Azabou
Eva L Dyer
Real-time decoding of neural activity is central to neuroscience and neurotechnology applications, from closed-loop experiments to brain-com… (voir plus)puter interfaces, where models are subject to strict latency constraints. Traditional methods, including simple recurrent neural networks, are fast and lightweight but often struggle to generalize to unseen data. In contrast, recent Transformer-based approaches leverage large-scale pretraining for strong generalization performance, but typically have much larger computational requirements and are not always suitable for low-resource or real-time settings. To address these shortcomings, we present POSSM, a novel hybrid architecture that combines individual spike tokenization via a cross-attention module with a recurrent state-space model (SSM) backbone to enable (1) fast and causal online prediction on neural activity and (2) efficient generalization to new sessions, individuals, and tasks through multi-dataset pretraining. We evaluate POSSM's decoding performance and inference speed on intracortical decoding of monkey motor tasks, and show that it extends to clinical applications, namely handwriting and speech decoding in human subjects. Notably, we demonstrate that pretraining on monkey motor-cortical recordings improves decoding performance on the human handwriting task, highlighting the exciting potential for cross-species transfer. In all of these tasks, we find that POSSM achieves decoding accuracy comparable to state-of-the-art Transformers, at a fraction of the inference cost (up to 9x faster on GPU). These results suggest that hybrid SSMs are a promising approach to bridging the gap between accuracy, inference speed, and generalization when training neural decoders for real-time, closed-loop applications.
Geometry aware graph attention networks to explain single-cell chromatin state and gene expression
Gabriele Malagoli
Patrick Hanel
A. Danese
Maria Colomé-Tatché
GNN-based Decentralized Perception in Multirobot Systems for Predicting Worker Actions
Ali Imran
David St-Onge
In industrial environments, predicting human actions is essential for ensuring safe and effective collaboration between humans and robots. T… (voir plus)his paper introduces a perception framework that enables mobile robots to understand and share information about human actions in a decentralized way. The framework first allows each robot to build a spatial graph representing its surroundings, which it then shares with other robots. This shared spatial data is combined with temporal information to track human behavior over time. A swarm-inspired decision-making process is used to ensure all robots agree on a unified interpretation of the human's actions. Results show that adding more robots and incorporating longer time sequences improve prediction accuracy. Additionally, the consensus mechanism increases system resilience, making the multi-robot setup more reliable in dynamic industrial settings.
Impact de l'antibiothérapie par Daptomycine dans le traitement des bactériémies à Enterococcus faecium en réanimation : l'étude rétrospective multicentrique ENTERODAPTO.
S. Herbel
L. Chantelot
J. Massol
Q. Moyon
J. Ricard
E. Azoulay
C. Hauw-Berlemont
E. Maury
T. Urbina
It's the Thought that Counts: Evaluating the Attempts of Frontier LLMs to Persuade on Harmful Topics
Matthew Kowal
Jasper Timm
Thomas H Costello
Antonio A. Arechar
Gordon Pennycook
David Rand
Adam Gleave
Persuasion is a powerful capability of large language models (LLMs) that both enables beneficial applications (e.g. helping people quit smok… (voir plus)ing) and raises significant risks (e.g. large-scale, targeted political manipulation). Prior work has found models possess a significant and growing persuasive capability, measured by belief changes in simulated or real users. However, these benchmarks overlook a crucial risk factor: the propensity of a model to attempt to persuade in harmful contexts. Understanding whether a model will blindly ``follow orders'' to persuade on harmful topics (e.g. glorifying joining a terrorist group) is key to understanding the efficacy of safety guardrails. Moreover, understanding if and when a model will engage in persuasive behavior in pursuit of some goal is essential to understanding the risks from agentic AI systems. We propose the Attempt to Persuade Eval (APE) benchmark, that shifts the focus from persuasion success to persuasion attempts, operationalized as a model's willingness to generate content aimed at shaping beliefs or behavior. Our evaluation framework probes frontier LLMs using a multi-turn conversational setup between simulated persuader and persuadee agents. APE explores a diverse spectrum of topics including conspiracies, controversial issues, and non-controversially harmful content. We introduce an automated evaluator model to identify willingness to persuade and measure the frequency and context of persuasive attempts. We find that many open and closed-weight models are frequently willing to attempt persuasion on harmful topics and that jailbreaking can increase willingness to engage in such behavior. Our results highlight gaps in current safety guardrails and underscore the importance of evaluating willingness to persuade as a key dimension of LLM risk. APE is available at github.com/AlignmentResearch/AttemptPersuadeEval
MesaNet: Sequence Modeling by Locally Optimal Test-Time Training
Johannes Von Oswald
Nino Scherrer
Seijin Kobayashi
Luca Versari
Songlin Yang
Maximilian Schlegel
Kaitlin Maile
Yanick Schimpf
Oliver Sieberling
Alexander Meulemans
Rif A. Saurous
Charlotte Frenkel
Blaise Aguera y Arcas
João Sacramento
Sequence modeling is currently dominated by causal transformer architectures that use softmax self-attention. Although widely adopted, trans… (voir plus)formers require scaling memory and compute linearly during inference. A recent stream of work linearized the softmax operation, resulting in powerful recurrent neural network (RNN) models with constant memory and compute costs such as DeltaNet, Mamba or xLSTM. These models can be unified by noting that their recurrent layer dynamics can all be derived from an in-context regression objective, approximately optimized through an online learning rule. Here, we join this line of work and introduce a numerically stable, chunkwise parallelizable version of the recently proposed Mesa layer (von Oswald et al., 2024), and study it in language modeling at the billion-parameter scale. This layer again stems from an in-context loss, but which is now minimized to optimality at every time point using a fast conjugate gradient solver. Through an extensive suite of experiments, we show that optimal test-time training enables reaching lower language modeling perplexity and higher downstream benchmark performance than previous RNNs, especially on tasks requiring long context understanding. This performance gain comes at the cost of additional flops spent during inference time. Our results are therefore intriguingly related to recent trends of increasing test-time compute to improve performance -- here by spending compute to solve sequential optimization problems within the neural network itself.
Robust Reinforcement Learning for Discrete Compositional Generation via General Soft Operators
A major bottleneck in scientific discovery involves narrowing a large combinatorial set of objects, such as proteins or molecules, to a smal… (voir plus)l set of promising candidates. While this process largely relies on expert knowledge, recent methods leverage reinforcement learning (RL) to enhance this filtering. They achieve this by estimating proxy reward functions from available datasets and using regularization to generate more diverse candidates. These reward functions are inherently uncertain, raising a particularly salient challenge for scientific discovery. In this work, we show that existing methods, often framed as sampling proportional to a reward function, are inadequate and yield suboptimal candidates, especially in large search spaces. To remedy this issue, we take a robust RL approach and introduce a unified operator that seeks robustness to the uncertainty of the proxy reward function. This general operator targets peakier sampling distributions while encompassing known soft RL operators. It also leads us to a novel algorithm that identifies higher-quality, diverse candidates in both synthetic and real-world tasks. Ultimately, our work offers a new, flexible perspective on discrete compositional generation tasks. Code: https://github.com/marcojira/tgm.
Self-Refining Training for Amortized Density Functional Theory
Cristian Gabellini
Hatem Helal
Density Functional Theory (DFT) allows for predicting all the chemical and physical properties of molecular systems from first principles by… (voir plus) finding an approximate solution to the many-body Schrödinger equation. However, the cost of these predictions becomes infeasible when increasing the scale of the energy evaluations, e.g., when calculating the ground-state energy for simulating molecular dynamics. Recent works have demonstrated that, for substantially large datasets of molecular conformations, Deep Learning-based models can predict the outputs of the classical DFT solvers by amortizing the corresponding optimization problems. In this paper, we propose a novel method that reduces the dependency of amortized DFT solvers on large pre-collected datasets by introducing a self-refining training strategy. Namely, we propose an efficient method that simultaneously trains a deep-learning model to predict the DFT outputs and samples molecular conformations that are used as training data for the model. We derive our method as a minimization of the variational upper bound on the KL-divergence measuring the discrepancy between the generated samples and the target Boltzmann distribution defined by the ground state energy. To demonstrate the utility of the proposed scheme, we perform an extensive empirical study comparing it with the models trained on the pre-collected datasets. Finally, we open-source our implementation of the proposed algorithm, optimized with asynchronous training and sampling stages, which enables simultaneous sampling and training. Code is available at https://github.com/majhas/self-refining-dft.