Publications

From inter‐brain connectivity to inter‐personal psychiatry
Social Neuro AI: Social Interaction as the “Dark Matter” of AI
Samuele Bolotta
Capacity Variation in the Many-to-one Stable Matching
Federico Bobbio
Andrea Lodi
Alfredo Torrico
Deep Learning Prediction of Response to Disease Modifying Therapy in Primary Progressive Multiple Sclerosis (P1-1.Virtual)
Jean-Pierre R. Falet
Joshua D. Durso-Finley
Brennan Nichyporuk
Julien Schroeter
Francesca Bovis
Maria-Pia Sormani
Douglas Arnold
Retrieval-Enhanced Machine Learning
Hamed Zamani
Mostafa Dehghani
Donald Metzler
Michael Bendersky
Although information access systems have long supportedpeople in accomplishing a wide range of tasks, we propose broadening the scope of use… (voir plus)rs of information access systems to include task-driven machines, such as machine learning models. In this way, the core principles of indexing, representation, retrieval, and ranking can be applied and extended to substantially improve model generalization, scalability, robustness, and interpretability. We describe a generic retrieval-enhanced machine learning (REML) framework, which includes a number of existing models as special cases. REML challenges information retrieval conventions, presenting opportunities for novel advances in core areas, including optimization. The REML research agenda lays a foundation for a new style of information access research and paves a path towards advancing machine learning and artificial intelligence.
AmbieGen tool at the SBST 2022 Tool Competition
Dmytro Humeniuk
Giuliano Antoniol
AmbieGen is a tool for generating test cases for cyber-physical systems (CPS). In the context of SBST 2022 CPS tool competition, it has been… (voir plus) adapted to generating virtual roads to test a car lane keeping assist system. AmbieGen leverages a two objective NSGA-II algorithm to produce the test cases. It has achieved the highest final score, accounting for the test case efficiency, effectiveness and diversity in both testing configurations.
Challenges in Machine Learning Application Development: An Industrial Experience Report
Md Saidur Rahman
Emilio Rivera
Yann‐Gaël Guéhéneuc
Bernd Lehnert
Challenges in Machine Learning Application Development: An Industrial Experience Report
Md. Saidur Rahman
Emilio Martínez Rivera
Yann‐Gaël Guéhéneuc
Bernd Lehnert
SAP is the market leader in enterprise application software offering an end-to-end suite of applications and services to enable their custom… (voir plus)ers worldwide to operate their business. Especially, retail customers of SAP deal with millions of sales transactions for their day-to-day business. Transactions are created during retail sales at the point of sale (POS) terminals and those transactions are then sent to some central servers for validations and other business operations. A considerable proportion of the retail transactions may have inconsistencies or anomalies due to many technical and human errors. SAP provides an automated process for error detection but still requires a manual process by dedicated employees using workbench software for correction. However, manual corrections of these errors are time-consuming, labor-intensive, and might be prone to further errors due to incorrect modifications. Thus, automated detection and correction of transaction errors are very important regarding their potential business values and the improvement in the business workflow. In this paper, we report on our experience from a project where we develop an AI-based system to automatically detect transaction errors and propose corrections. We identify and discuss the challenges that we faced during this collaborative research and development project, from two distinct perspectives: Software Engineering and Machine Learning. We report on our experience and insights from the project with guidelines for the identified challenges. We collect developers’ feedback for qualitative analysis of our findings. We believe that our findings and recommendations can help other researchers and practitioners embarking into similar endeavours. CCS CONCEPTS • Software and its engineering → Programming teams.
Characterizing Idioms: Conventionality and Contingency
Michaela Socolof
Michael Wagner
Idioms are unlike most phrases in two important ways. First, words in an idiom have non-canonical meanings. Second, the non-canonical meanin… (voir plus)gs of words in an idiom are contingent on the presence of other words in the idiom. Linguistic theories differ on whether these properties depend on one another, as well as whether special theoretical machinery is needed to accommodate idioms. We define two measures that correspond to the properties above, and we show that idioms fall at the expected intersection of the two dimensions, but that the dimensions themselves are not correlated. Our results suggest that introducing special machinery to handle idioms may not be warranted.
Compositional Generalization in Dependency Parsing
An Empirical Survey of the Effectiveness of Debiasing Techniques for Pre-trained Language Models
Nicholas Meade
Elinor Poole-Dayan
Recent work has shown pre-trained language models capture social biases from the large amounts of text they are trained on. This has attract… (voir plus)ed attention to developing techniques that mitigate such biases. In this work, we perform an empirical survey of five recently proposed bias mitigation techniques: Counterfactual Data Augmentation (CDA), Dropout, Iterative Nullspace Projection, Self-Debias, and SentenceDebias. We quantify the effectiveness of each technique using three intrinsic bias benchmarks while also measuring the impact of these techniques on a model’s language modeling ability, as well as its performance on downstream NLU tasks. We experimentally find that: (1) Self-Debias is the strongest debiasing technique, obtaining improved scores on all bias benchmarks; (2) Current debiasing techniques perform less consistently when mitigating non-gender biases; And (3) improvements on bias benchmarks such as StereoSet and CrowS-Pairs by using debiasing strategies are often accompanied by a decrease in language modeling ability, making it difficult to determine whether the bias mitigation was effective.
Hallucinated but Factual! Inspecting the Factuality of Hallucinations in Abstractive Summarization
Meng Cao
Yue Dong