Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Inertia-Based Indices to Determine the Number of Clusters in K-Means: An Experimental Evaluation
This paper gives an experimentally supported review and comparison of several indices based on the conventional K-means inertia criterion fo… (voir plus)r determining the number of clusters,
This paper gives an experimentally supported review and comparison of several indices based on the conventional K-means inertia criterion fo… (voir plus)r determining the number of clusters,
This paper gives an experimentally supported review and comparison of several indices based on the conventional K-means inertia criterion fo… (voir plus)r determining the number of clusters,
This paper gives an experimentally supported review and comparison of several indices based on the conventional K-means inertia criterion fo… (voir plus)r determining the number of clusters,
In this work, we investigate the interplay between memorization and learning in the context of stochastic convex optimization (SCO)… (voir plus). We define memorization via the information a learning algorithm reveals about its training data points. We then quantify this information using the framework of conditional mutual information (CMI) proposed by Steinke and Zakynthinou (2020). Our main result is a precise characterization of the tradeoff between the accuracy of a learning algorithm and its CMI, answering an open question posed by Livni (2023). We show that, in the
2024-01-01
International Conference on Machine Learning (publié)
INViTE: INterpret and Control Vision-Language Models with Text Explanations
Haozhe Chen
Junfeng Yang
Carl Vondrick
Chengzhi Mao
Columbia University
M. University
Large-scale pre-trained vision foundation models, such as CLIP, have become de facto backbones for various vision tasks. However, due to the… (voir plus)ir black-box nature, understanding the underlying rules behind these models’ predictions and controlling model behaviors have remained open challenges. We present INViTE: a framework for INterpreting Vision Transformer’s latent tokens with Text Explanations. Given a latent token, INViTE retains its semantic information to the final layer using transformer’s local operations and retrieves the closest text for explanation. INViTE enables understanding of model visual reasoning procedure without needing additional model training or data collection. Based on the obtained interpretations, INViTE allows for model editing that controls model reasoning behaviors and improves model robustness against biases and spurious correlations. Our code is available at https://github.com/tonychenxyz/vit-interpret.
2024-01-01
International Conference on Learning Representations (publié)
The ability to perform complex tasks from detailed instructions is a key to the remarkable achievements of our species. As humans, we are no… (voir plus)t only capable of performing a wide variety of tasks but also very complex ones that may entail hundreds or thousands of steps to complete. Large language models and their more recent multimodal counterparts that integrate textual and visual inputs have achieved unprecedented success in performing complex tasks. Yet, most existing benchmarks are largely confined to single-modality inputs — either text or vision — and thus, narrowing the scope of multimodal integration assessments, particularly for instruction-following in multimodal contexts. To bridge this gap, we introduce the instructed-Virtual VISual Decision Making (iWISDM) environment engineered to generate a limitless array of vision-language tasks of varying complexity. Using iWISDM, we compiled three distinct benchmarks of instruction following visual tasks across varying complexity levels and evaluated several newly developed multimodal models on these benchmarks. Our findings establish iWISDM as a robust benchmark for assessing the instructional adherence of both existing and emergent multimodal models and highlight a large gap in these models’ ability to precisely follow instructions.
Audiovisual emotion recognition (ER) in videos has immense potential over unimodal performance. It effectively leverages the inter-and intra… (voir plus)-modal dependencies between visual and auditory modalities. This work proposes a novel audio-visual emotion recognition system utilizing a joint multimodal transformer architecture with key-based cross-attention. This framework aims to exploit the complementary nature of audio and visual cues (facial expressions and vocal patterns) in videos, leading to superior performance compared to solely relying on a single modality. The proposed model leverages separate backbones for capturing intra-modal temporal dependencies within each modality (audio and visual). Subse-quently, a joint multimodal transformer architecture integrates the individual modality embeddings, enabling the model to effectively capture inter-modal (between audio and visual) and intra-modal (within each modality) relationships. Extensive evaluations on the challenging Affwild2 dataset demonstrate that the proposed model significantly outperforms baseline and state-of-the-art methods in ER tasks.
Large Language Models (LLMs) have emerged as highly capable systems and are increasingly being integrated into various uses. Nevertheless, t… (voir plus)he rapid advancement in their deployment trails a comprehensive understanding of their internal mechanisms, as well as a delineation of their capabilities and limitations. A desired characteristic of an intelligent system is its ability to recognize the scope of its own knowledge. To investigate whether LLMs embody this attribute, we develop a benchmark that challenges these models to enumerate all information they possess on specific topics. This benchmark assesses whether the models recall excessive, insufficient, or the precise amount of required information, thereby indicating their awareness of how much they know about the given topic. Our findings reveal that the emergence of this property varies across different architectures and manifests at diverse rates. However, with sufficient scaling, all tested models are ultimately capable of performing this task. The insights gained from this research advance our understanding of LLMs, shedding light on their operational capabilities and contributing to the ongoing exploration of their intricate dynamics.
2024-01-01
Conference on Empirical Methods in Natural Language Processing (publié)