Publications

On the Scalability of GNNs for Molecular Graphs
Maciej Sypetkowski
Frederik Wenkel
Farimah Poursafaei
Nia Dickson
Karush Suri
Philip Fradkin
Scaling deep learning models has been at the heart of recent revolutions in language modelling and image generation. Practitioners have obse… (voir plus)rved a strong relationship between model size, dataset size, and performance. However, structure-based architectures such as Graph Neural Networks (GNNs) are yet to show the benefits of scale mainly due to the lower efficiency of sparse operations, large data requirements, and lack of clarity about the effectiveness of various architectures. We address this drawback of GNNs by studying their scaling behavior. Specifically, we analyze message-passing networks, graph Transformers, and hybrid architectures on the largest public collection of 2D molecular graphs. For the first time, we observe that GNNs benefit tremendously from the increasing scale of depth, width, number of molecules, number of labels, and the diversity in the pretraining datasets, resulting in a 30.25% improvement when scaling to 1 billion parameters and 28.98% improvement when increasing size of dataset to eightfold. We further demonstrate strong finetuning scaling behavior on 38 tasks, outclassing previous large models. We hope that our work paves the way for an era where foundational GNNs drive pharmaceutical drug discovery.
Towards a "Universal Translator" for Neural Dynamics at Single-Cell, Single-Spike Resolution
Yizi Zhang
Yanchen Wang
Donato M. Jiménez-Benetó
Zixuan Wang
Mehdi Azabou
Renee Tung
Olivier Winter
International Brain Laboratory
Eva L Dyer
Liam Paninski
Cole Lincoln Hurwitz
Trajectory Flow Matching with Applications to Clinical Time Series Modelling
Xi Zhang
Yuan Pu
Yuki Kawamura
Andrew Loza
Dennis Shung
Alexander Tong
Modeling stochastic and irregularly sampled time series is a challenging problem found in a wide range of applications, especially in medici… (voir plus)ne. Neural stochastic differential equations (Neural SDEs) are an attractive modeling technique for this problem, which parameterize the drift and diffusion terms of an SDE with neural networks. However, current algorithms for training Neural SDEs require backpropagation through the SDE dynamics, greatly limiting their scalability and stability. To address this, we propose **Trajectory Flow Matching** (TFM), which trains a Neural SDE in a *simulation-free* manner, bypassing backpropagation through the dynamics. TFM leverages the flow matching technique from generative modeling to model time series. In this work we first establish necessary conditions for TFM to learn time series data. Next, we present a reparameterization trick which improves training stability. Finally, we adapt TFM to the clinical time series setting, demonstrating improved performance on three clinical time series datasets both in terms of absolute performance and uncertainty prediction.
VisMin: Visual Minimal-Change Understanding
Rabiul Awal
Saba Ahmadi
Le Zhang
Fine-grained understanding of objects, attributes, and relationships between objects is crucial for visual-language models (VLMs). To evalua… (voir plus)te VLMs' fine-grained understanding, existing benchmarks primarily focus on evaluating VLMs' capability to distinguish between two very similar captions given an image. In this paper, our focus is on evaluating VLMs' capability to distinguish between two very similar images given a caption. To this end, we introduce a new, challenging benchmark termed Visual Minimal-Change Understanding (VisMin), which requires models to predict the correct image-caption match given two images and two captions. Importantly, the image pair (as well as the caption pair) contains minimal changes, i.e., between the two images (as well as between the two captions), only one aspect changes at a time from among the following possible types of changes: object, attribute, count, and spatial relation. These four types of minimal changes are specifically designed to test the models' understanding of objects, attributes of objects (such as color, material, shape), counts of objects, and spatial relationships between objects. To curate our benchmark, we built an automatic pipeline using large language models and diffusion models, followed by a rigorous 4-step verification process by human annotators. Empirical experiments reveal that current VLMs exhibit notable deficiencies in understanding spatial relationships and counting abilities. Furthermore, leveraging the automated nature of our data creation process, we generate a large-scale training dataset, which we use to finetune CLIP (a foundational VLM) and Idefics2 (a multimodal large language model). Our findings show that both these models benefit significantly from fine-tuning on this data, as evident by marked improvements in fine-grained understanding across a wide range of benchmarks. Additionally, such fine-tuning improves CLIP's general image-text alignment capabilities too. All resources including the benchmark, the training data, and the finetuned model checkpoints will be released.
Wasserstein Distributionally Robust Optimization through the Lens of Structural Causal Models and Individual Fairness
Ahmad Reza Ehyaei
Samira Samadi
When is an Embedding Model More Promising than Another?
Maxime DARRIN
Philippe Formont
Ismail Ben Ayed
Frequency-based View Selection in Gaussian Splatting Reconstruction
Monica Li
Pierre-Yves Lajoie
Three-dimensional reconstruction is a fundamental problem in robotics perception. We examine the problem of active view selection to perform… (voir plus) 3D Gaussian Splatting reconstructions with as few input images as possible. Although 3D Gaussian Splatting has made significant progress in image rendering and 3D reconstruction, the quality of the reconstruction is strongly impacted by the selection of 2D images and the estimation of camera poses through Structure-from-Motion (SfM) algorithms. Current methods to select views that rely on uncertainties from occlusions, depth ambiguities, or neural network predictions directly are insufficient to handle the issue and struggle to generalize to new scenes. By ranking the potential views in the frequency domain, we are able to effectively estimate the potential information gain of new viewpoints without ground truth data. By overcoming current constraints on model architecture and efficacy, our method achieves state-of-the-art results in view selection, demonstrating its potential for efficient image-based 3D reconstruction.
A neuronal least-action principle for real-time learning in cortical circuits
Walter Senn
Dominik Dold
Akos F. Kungl
Benjamin Ellenberger
Jakob Jordan
João Sacramento
Mihai A. Petrovici
One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal lea… (voir plus)st-action principle for cortical processing of sensory streams to produce appropriate behavioural outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimize the local somato-dendritic mismatch error within individual neurons. For motor output neurons, it implies minimizing an instantaneous behavioural error. For deep network neurons, it implies a prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory inputs and the motor feedback during the whole sensory-motor trajectory. Ongoing synaptic plasticity reduces the somato-dendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic dynamics for global real-time computation and learning in the brain and in physical substrates in general.
Not Only the Last-Layer Features for Spurious Correlations: All Layer Deep Feature Reweighting
Humza Wajid Hameed
G'eraldin Nanfack
Spurious correlations are a major source of errors for machine learning models, in particular when aiming for group-level fairness. It has b… (voir plus)een recently shown that a powerful approach to combat spurious correlations is to re-train the last layer on a balanced validation dataset, isolating robust features for the predictor. However, key attributes can sometimes be discarded by neural networks towards the last layer. In this work, we thus consider retraining a classifier on a set of features derived from all layers. We utilize a recently proposed feature selection strategy to select unbiased features from all the layers. We observe this approach gives significant improvements in worst-group accuracy on several standard benchmarks.
Protein Language Models: Is Scaling Necessary?
Quentin Fournier
Robert M. Vernon
Almer van der Sloot
Benjamin Schulz
Christopher James Langmead
A Toolbox for Surfacing Health Equity Harms and Biases in Large Language Models
Stephen R. Pfohl
Heather Cole-Lewis
Rory A Sayres
Darlene Neal
Mercy Nyamewaa Asiedu
Awa Dieng
Nenad Tomašev
Qazi Mamunur Rashid
Shekoofeh Azizi
Liam G. McCoy
L. A. Celi
Yun Liu
Mike Schaekermann
Alanna Walton
Alicia Parrish
Chirag Nagpal
Preeti Singh
Akeiylah Dewitt
P. A. Mansfield … (voir 10 de plus)
Sushant Prakash
Katherine Heller
Alan Karthikesalingam
Christopher Semturs
Joelle Barral
Greg C. Corrado
Yossi Matias
Jamila Smith-Loud
Ivor Horn
Karan Singhal
What Are They Doing? Joint Audio-Speech Co-Reasoning
Yingzhi Wang
Pooneh Mousavi
Artem Ploujnikov