Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Julie Durette
Alumni
Publications
Task Mapping Strategies for Electric Power System Simulations on Heterogeneous Clusters
In this work, we propose improved task mapping strategies for real-time electric power system simulations on heterogeneous computing cluster… (see more)s, considering both heterogeneous communication links and processing capacities, with a focus on bottleneck objectives. We approach the problem through two complementary models: the bottleneck quadratic semi-assignment problem (BQSAP), which optimizes task configuration for a fixed number of computing nodes while minimizing communication and computation costs; and the variable-size bin packing problem with quadratic communication constraints (Q-VSBPP), which minimizes the required number of computing nodes, valuable for resource provisioning scenarios. We extend the PuLP library to solve approximately both problems, explicitly including communication costs and processing constraints, and formalize the nomenclature and definitions for bottleneck objectives in graph partitioning. This formalization fills a gap in the existing literature and provides a framework for the rigorous analysis and application of task mapping techniques to real-time electric power system simulation. Finally, we provide a quantitative study and benchmark the extended PuLP library with the SCOTCH partitioning library in the context of real-time electromagnetic transient (EMT) simulation task mapping.
2025-09-29
IEEE International Conference on Smart Grid Communications (published)