Publications

Multi-Environment Pretraining Enables Transfer to Action Limited Datasets
David Venuto
Sherry Yang
Pieter Abbeel
Igor Mordatch
Ofir Nachum
Using massive datasets to train large-scale models has emerged as a dominant approach for broad generalization in natural language an… (voir plus)d vision applications. In reinforcement learning, however, a key challenge is that available data of sequential decision making is often not annotated with actions - for example, videos of game-play are much more available than sequences of frames paired with the logged game controls. We propose to circumvent this challenge by combining large but sparsely-annotated datasets from a \emph{target} environment of interest with fully-annotated datasets from various other \emph{source} environments. Our method, Action Limited PreTraining (ALPT), leverages the generalization capabilities of inverse dynamics modelling (IDM) to label missing action data in the target environment. We show that utilizing even one additional environment dataset of labelled data during IDM pretraining gives rise to substantial improvements in generating action labels for unannotated sequences. We evaluate our method on benchmark game-playing environments and show that we can significantly improve game performance and generalization capability compared to other approaches, even when using annotated datasets equivalent to only 12 minutes of gameplay.
Multi-Environment Pretraining Enables Transfer to Action Limited Datasets
David Venuto
Sherry Yang
Pieter Abbeel
Igor Mordatch
Ofir Nachum
Multivariate Time-Series Anomaly Detection with Temporal Self-supervision and Graphs: Application to Vehicle Failure Prediction
Hadi Hojjati
Mohammadreza Sadeghi
Neighbor Auto-Grouping Graph Neural Networks for Handover Parameter Configuration in Cellular Network
Mehrtash Mehrabi
Walid Masoudimansour
Yingxue Zhang
Jie Chuai
Zhitang Chen
Jianye Hao
Yanhui. Geng
Nesterov Meets Optimism: Rate-Optimal Separable Minimax Optimization
Chris Junchi Li
Huizhuo Yuan
Angela Yuan
Quanquan Gu
Michael Jordan
We propose a new first-order optimization algorithm — AcceleratedGradient-OptimisticGradient (AG-OG) Descent Ascent—for separable convex… (voir plus)-concave minimax optimization. The main idea of our algorithm is to carefully leverage the structure of the minimax problem, performing Nesterov acceleration on the individual component and optimistic gradient on the coupling component. Equipped with proper restarting, we show that AG-OG achieves the optimal convergence rate (up to a constant) for a variety of settings, including bilinearly coupled strongly convex-strongly concave minimax optimization (bi-SC-SC), bilinearly coupled convex-strongly concave minimax optimization (bi-C-SC), and bilinear games. We also extend our algorithm to the stochastic setting and achieve the optimal convergence rate in both bi-SC-SC and bi-C-SC settings. AG-OG is the first single-call algorithm with optimal convergence rates in both deterministic and stochastic settings for bilinearly coupled minimax optimization problems.
Nesterov Meets Optimism: Rate-Optimal Separable Minimax Optimization
Chris Junchi Li
Angela Yuan
Quanquan Gu
Michael Jordan
We propose a new first-order optimization algorithm --- AcceleratedGradient-OptimisticGradient (AG-OG) Descent Ascent---for separable convex… (voir plus)-concave minimax optimization. The main idea of our algorithm is to carefully leverage the structure of the minimax problem, performing Nesterov acceleration on the individual component and optimistic gradient on the coupling component. Equipped with proper restarting, we show that AG-OG achieves the optimal convergence rate (up to a constant) for a variety of settings, including bilinearly coupled strongly convex-strongly concave minimax optimization (bi-SC-SC), bilinearly coupled convex-strongly concave minimax optimization (bi-C-SC), and bilinear games. We also extend our algorithm to the stochastic setting and achieve the optimal convergence rate in both bi-SC-SC and bi-C-SC settings. AG-OG is the first single-call algorithm with optimal convergence rates in both deterministic and stochastic settings for bilinearly coupled minimax optimization problems.
NEURAL MANIFOLDS AND GRADIENT-BASED ADAPTATION IN NEURAL-INTERFACE TASKS
Alexandre Payeur
Amy L. Orsborn
. Neural activity tends to reside on manifolds whose dimension is much lower than the dimension of the whole neural state space. Experiments… (voir plus) using brain-computer interfaces with microelectrode arrays implanted in the motor cortex of nonhuman primates tested the hypothesis that external perturbations should produce different adaptation strategies depending on how “aligned” the perturbation is with respect to a pre-existing intrinsic manifold. On the one hand, perturbations within the manifold (WM) evoked fast reassociations of existing patterns for rapid adaptation. On the other hand, perturbations outside the manifold (OM) triggered the slow emergence of new neural patterns underlying a much slower—and, without adequate training protocols, inconsistent or virtually impossible—adaptation. This suggests that the time scale and the overall difficulty of the brain to adapt depend fundamentally on the structure of neural activity. Here, we used a simplified static Gaussian model to show that gradient-descent learning could explain the differences between adaptation to WM and OM perturbations. For small learning rates, we found that the adaptation speeds were different but the model eventually adapted to both perturbations. Moreover, sufficiently large learning rates could entirely prohibit adaptation to OM perturbations while preserving adaptation to WM perturbations, in agreement with experiments. Adopting an incremental training protocol, as has been done in experiments, permitted a swift recovery of a full adaptation in the cases where OM perturbations were previously impossible to relearn. Finally, we also found that gradient descent was compatible with the reassociation mechanism on short adaptation time scales. Since gradient descent has many biologically plausible variants, our findings thus establish gradient-based learning as a plausible mechanism for adaptation under network-level constraints, with a central role for the learning rate.
NEURAL MANIFOLDS AND GRADIENT-BASED ADAPTATION IN NEURAL-INTERFACE TASKS
Alexandre Payeur
Amy L. Orsborn
. Neural activity tends to reside on manifolds whose dimension is much lower than the dimension of the whole neural state space. Experiments… (voir plus) using brain-computer interfaces with microelectrode arrays implanted in the motor cortex of nonhuman primates tested the hypothesis that external perturbations should produce different adaptation strategies depending on how “aligned” the perturbation is with respect to a pre-existing intrinsic manifold. On the one hand, perturbations within the manifold (WM) evoked fast reassociations of existing patterns for rapid adaptation. On the other hand, perturbations outside the manifold (OM) triggered the slow emergence of new neural patterns underlying a much slower—and, without adequate training protocols, inconsistent or virtually impossible—adaptation. This suggests that the time scale and the overall difficulty of the brain to adapt depend fundamentally on the structure of neural activity. Here, we used a simplified static Gaussian model to show that gradient-descent learning could explain the differences between adaptation to WM and OM perturbations. For small learning rates, we found that the adaptation speeds were different but the model eventually adapted to both perturbations. Moreover, sufficiently large learning rates could entirely prohibit adaptation to OM perturbations while preserving adaptation to WM perturbations, in agreement with experiments. Adopting an incremental training protocol, as has been done in experiments, permitted a swift recovery of a full adaptation in the cases where OM perturbations were previously impossible to relearn. Finally, we also found that gradient descent was compatible with the reassociation mechanism on short adaptation time scales. Since gradient descent has many biologically plausible variants, our findings thus establish gradient-based learning as a plausible mechanism for adaptation under network-level constraints, with a central role for the learning rate.
NEURAL NETWORK-BASED SOLVERS FOR PDES
M. Cameron
Ian G Goodfellow
(1) N (x; θ) = Ll+1 ○ σl ○Ll ○ σl−1 ○ . . . ○ σ1 ○L1. The symbol Lk denotes the k’s affine operator of the form Lk(x) = … (voir plus)Akx + bk, while σk denotes a nonlinear function called an activation function. The activation functions are chosen by the user. The matrices Ak and shift vectors (or bias vectors) bk are encoded into the argument θ: θ = {Ak, bk} l+1 k=1. The term training neural network means finding {Ak, bk} l+1 k=1 such that N (x; θ) satisfies certain conditions. These conditions are described by the loss function chosen by the user. For example, one might want the neural network to assume certain values fj at certain points xj , j = 1, . . . ,N . These points x are called the training data. In this case, a common choice of the loss function is the least squares error:
Noisy Pairing and Partial Supervision for Stylized Opinion Summarization
Reinald Kim
Mirella Lapata. 2020
Un-611
Emmanuel Bengio
Maxinder S. Kan-620
Asja Fischer
Somnath Basu
Roy Chowdhury
Chao Zhao
Tanya Goyal
Junyi Jiacheng Xu
Jessy Li
Ivor Wai-hung Tsang
James T. Kwok
Neil Houlsby
Andrei Giurgiu
Stanisław Jastrzębski … (voir 22 de plus)
Bruna Morrone
Quentin de Laroussilhe
Mona Gesmundo
Attariyan Sylvain
Gelly
Thomas Wolf
Lysandre Debut
Julien Victor Sanh
Clement Chaumond
Anthony Delangue
Pier-339 Moi
Tim ric Cistac
R´emi Rault
Morgan Louf
Funtow-900 Joe
Sam Davison
Patrick Shleifer
Von Platen
Clara Ma
Yacine Jernite
Julien Plu
Canwen Xu
Opinion summarization research has primar-001 ily focused on generating summaries reflect-002 ing important opinions from customer reviews 0… (voir plus)03 without paying much attention to the writing 004 style. In this paper, we propose the stylized 005 opinion summarization task, which aims to 006 generate a summary of customer reviews in 007 the desired (e.g., professional) writing style. 008 To tackle the difficulty in collecting customer 009 and professional review pairs, we develop a 010 non-parallel training framework, Noisy Pair-011 ing and Partial Supervision ( NAPA ), which 012 trains a stylized opinion summarization sys-013 tem from non-parallel customer and profes-014 sional review sets. We create a benchmark P RO - 015 S UM by collecting customer and professional 016 reviews from Yelp and Michelin. Experimental 017 results on P RO S UM and FewSum demonstrate 018 that our non-parallel training framework con-019 sistently improves both automatic and human 020 evaluations, successfully building a stylized 021 opinion summarization model that can gener-022 ate professionally-written summaries from cus-023 tomer reviews. 024
Normalization Layers Are All That Sharpness-Aware Minimization Needs
Maximilian Mueller
Tiffany Joyce Vlaar
Matthias Hein
Sharpness-aware minimization (SAM) was proposed to reduce sharpness of minima and has been shown to enhance generalization performance in va… (voir plus)rious settings. In this work we show that perturbing only the affine normalization parameters (typically comprising 0.1% of the total parameters) in the adversarial step of SAM can outperform perturbing all of the parameters.This finding generalizes to different SAM variants and both ResNet (Batch Normalization) and Vision Transformer (Layer Normalization) architectures. We consider alternative sparse perturbation approaches and find that these do not achieve similar performance enhancement at such extreme sparsity levels, showing that this behaviour is unique to the normalization layers. Although our findings reaffirm the effectiveness of SAM in improving generalization performance, they cast doubt on whether this is solely caused by reduced sharpness.
A Novel Deep Multi-head Attentive Vulnerable Line Detector
Miles Q. Li
Ashita Diwan