Peu importe la taille : démocratiser la découverte de protéines avec l'IA
Des chercheurs de Mila ont créé un puissant modèle de langage protéique à source ouverte plus compact et efficace afin de démocratiser la découverte de protéines.
La prochaine cohorte de notre programme, conçu pour fournir aux participant·e·s une compréhension fondamentale des technologies de l'IA, se déroulera à Ottawa les 28 et 29 novembre.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
The Stack: 3 TB of permissively licensed source code
Large Language Models (LLMs) play an ever-increasing role in the field of Artificial Intelligence (AI)--not only for natural language proces… (voir plus)sing but also for code understanding and generation. To stimulate open and responsible research on LLMs for code, we introduce The Stack, a 3.1 TB dataset consisting of permissively licensed source code in 30 programming languages. We describe how we collect the full dataset, construct a permissively licensed subset, present a data governance plan, discuss limitations, and show promising results on text2code benchmarks by training 350M-parameter decoders on different Python subsets. We find that (1) near-deduplicating the data significantly boosts performance across all experiments, and (2) it is possible to match previously reported HumanEval and MBPP performance using only permissively licensed data. We make the dataset available at https://hf.co/BigCode, provide a tool called"Am I in The Stack"(https://hf.co/spaces/bigcode/in-the-stack) for developers to search The Stack for copies of their code, and provide a process for code to be removed from the dataset by following the instructions at https://www.bigcode-project.org/docs/about/the-stack/.
While demands for change and accountability for harmful AI consequences mount, foreseeing the downstream effects of deploying AI systems rem… (voir plus)ains a challenging task. We developed AHA! (Anticipating Harms of AI), a generative framework to assist AI practitioners and decision-makers in anticipating potential harms and unintended consequences of AI systems prior to development or deployment. Given an AI deployment scenario, AHA! generates descriptions of possible harms for different stakeholders. To do so, AHA! systematically considers the interplay between common problematic AI behaviors as well as their potential impacts on different stakeholders, and narrates these conditions through vignettes. These vignettes are then filled in with descriptions of possible harms by prompting crowd workers and large language models. By examining 4113 harms surfaced by AHA! for five different AI deployment scenarios, we found that AHA! generates meaningful examples of harms, with different problematic AI behaviors resulting in different types of harms. Prompting both crowds and a large language model with the vignettes resulted in more diverse examples of harms than those generated by either the crowd or the model alone. To gauge AHA!'s potential practical utility, we also conducted semi-structured interviews with responsible AI professionals (N=9). Participants found AHA!'s systematic approach to surfacing harms important for ethical reflection and discovered meaningful stakeholders and harms they believed they would not have thought of otherwise. Participants, however, differed in their opinions about whether AHA! should be used upfront or as a secondary-check and noted that AHA! may shift harm anticipation from an ideation problem to a potentially demanding review problem. Drawing on our results, we discuss design implications of building tools to help practitioners envision possible harms.
There has been growing interest in improving the BERT inference throughput on resource-constrained edge devices for a satisfactory user expe… (voir plus)rience. One methodology is to employ heterogeneous computing, which utilizes multiple processing elements to accelerate inference. Another methodology is to deploy Neural Architecture Search (NAS) to find optimal solutions in accuracy-throughput design space. In this paper, for the first time, we incorporate NAS with pipelining for BERT models. We show that performing NAS with pipelining achieves on average 53% higher throughput, compared to NAS with a homogeneous system. Additionally, we propose a NAS algorithm that incorporates hardware performance feedback to accelerate the NAS process. Our proposed NAS algorithm speeds up the search process by ~4x, and 5.5x on the design space of the BERT and CNNs, respectively. Also, by exploring the accuracy-throughput design space of BERT models, we demonstrate that performing pipelining then NAS (Pipeline-then-NAS) can lead to solutions with up to 9x higher inference throughput, compared to running homogeneous inference on the BERT-base model, with only a 1.3% decrease in accuracy.
Within the domain of dialogue, the ability to orchestrate multiple independently trained dialogue agents to create a unified system is of pa… (voir plus)rticular importance. Where we define orchestration as the task of selecting a subset of skills which most appropriately answer a user input using features extracted from both the user input and the individual skills. In this work, we study the task of online dialogue orchestration where the user feedback associated with the dialogue agent may not always be observed. In order to address the missing feedback setting, we propose to combine the attentive contextual bandit approach with an unsupervised learning mechanism such as clustering. By leveraging clustering to estimate missing reward, we are able to learn from each incoming event, even those with missing rewards. Promising empirical results are obtained on proprietary conversational datasets.
2023-06-04
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (publié)
The machine learning community has mainly relied on real data to benchmark algorithms as it provides compelling evidence of model applicabil… (voir plus)ity. Evaluation on synthetic datasets can be a powerful tool to provide a better understanding of a model’s strengths, weaknesses and overall capabilities. Gaining these insights can be particularly important for generative modeling as the target quantity is completely unknown. Multiple issues related to the evaluation of generative models have been reported in the literature. We argue those problems can be avoided by an evaluation based on ground truth. General criticisms of synthetic experiments are that they are too simplified and not representative of practical scenarios. As such, our experimental setting is tailored to a realistic generative task. We focus on categorical data and introduce an appropriately scalable evaluation method. Our method involves tasking a generative model to learn a distribution in a high-dimensional setting. We then successively bin the large space to obtain smaller probability spaces where meaningful statistical tests can be applied. We consider increasingly large probability spaces, which correspond to increasingly difficult modeling tasks, and compare the generative models based on the highest task difficulty they can reach before being detected as being too far from the ground truth. We validate our evaluation procedure with synthetic experiments on both synthetic generative models and current state-of-the-art categorical generative models.
2023-06-04
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (publié)
Self-supervised learning (SSL) has allowed substantial progress in Automatic Speech Recognition (ASR) performance in low-resource settings. … (voir plus)In this context, it has been demonstrated that larger self-supervised feature extractors are crucial for achieving lower downstream ASR error rates. Thus, better performance might be sanctioned with longer inferences. This article explores different approaches that may be deployed during the fine-tuning to reduce the computations needed in the SSL encoder, leading to faster inferences. We adapt a number of existing techniques to common ASR settings and benchmark them, displaying performance drops and gains in inference times. Interestingly, we found that given enough downstream data, a simple downsampling of the input sequences outperforms the other methods with both low performance drops and high computational savings, reducing computations by 61.3% with an WER increase of only 0. 81. Finally, we analyze the robustness of the comparison to changes in dataset conditions, revealing sensitivity to dataset size.
2023-06-04
2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW) (publié)
In this paper, we explore self-supervised learning (SSL) for analyzing a first-of-its-kind database of cry recordings containing clinical in… (voir plus)dications of more than a thousand newborns. Specifically, we target cry-based detection of neurological injury as well as identification of cry triggers such as pain, hunger, and discomfort. Annotating a large database in the medical setting is expensive and timeconsuming, typically requiring the collaboration of several experts over years. Leveraging large amounts of unlabeled audio data to learn useful representations can lower the cost of building robust models and, ultimately, clinical solutions. In this work, we experiment with self-supervised pre-training of a convolutional neural network on large audio datasets. We show that pre-training with SSL contrastive loss (SimCLR) performs significantly better than supervised pre-training for both neuro injury and cry triggers. In addition, we demonstrate further performance gains through SSL-based domain adaptation using unlabeled infant cries. We also show that using such SSL-based pre-training for adaptation to cry sounds decreases the need for labeled data of the overall system.
2023-06-04
2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW) (publié)
Our work examines the way in which large language models can be used for robotic planning and sampling in the context of automated photograp… (voir plus)hic documentation. Specifically, we illustrate how to produce a photo-taking robot with an exceptional level of semantic awareness by leveraging recent advances in general purpose language (LM) and vision-language (VLM) models. Given a high-level description of an event we use an LM to generate a natural-language list of photo descriptions that one would expect a photographer to capture at the event. We then use a VLM to identify the best matches to these descriptions in the robot's video stream. The photo portfolios generated by our method are consistently rated as more appropriate to the event by human evaluators than those generated by existing methods.
2023-06-02
2023 IEEE International Conference on Robotics and Automation (ICRA) (publié)