Le Studio d'IA pour le climat de Mila vise à combler l’écart entre la technologie et l'impact afin de libérer le potentiel de l'IA pour lutter contre la crise climatique rapidement et à grande échelle.
Le programme a récemment publié sa première note politique, intitulée « Considérations politiques à l’intersection des technologies quantiques et de l’intelligence artificielle », réalisée par Padmapriya Mohan.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
How can deep learning advance computational modeling of sensory information processing?
Deep learning, computational neuroscience, and cognitive science have overlapping goals related to understanding intelligence such that perc… (voir plus)eption and behaviour can be simulated in computational systems. In neuroimaging, machine learning methods have been used to test computational models of sensory information processing. Recently, these model comparison techniques have been used to evaluate deep neural networks (DNNs) as models of sensory information processing. However, the interpretation of such model evaluations is muddied by imprecise statistical conclusions. Here, we make explicit the types of conclusions that can be drawn from these existing model comparison techniques and how these conclusions change when the model in question is a DNN. We discuss how DNNs are amenable to new model comparison techniques that allow for stronger conclusions to be made about the computational mechanisms underlying sensory information processing.
While a lot of progress has been made in recent years, the dynamics of learning in deep nonlinear neural networks remain to this day largely… (voir plus) misunderstood. In this work, we study the case of binary classification and prove various properties of learning in such networks under strong assumptions such as linear separability of the data. Extending existing results from the linear case, we confirm empirical observations by proving that the classification error also follows a sigmoidal shape in nonlinear architectures. We show that given proper initialization, learning expounds parallel independent modes and that certain regions of parameter space might lead to failed training. We also demonstrate that input norm and features' frequency in the dataset lead to distinct convergence speeds which might shed some light on the generalization capabilities of deep neural networks. We provide a comparison between the dynamics of learning with cross-entropy and hinge losses, which could prove useful to understand recent progress in the training of generative adversarial networks. Finally, we identify a phenomenon that we baptize \textit{gradient starvation} where the most frequent features in a dataset prevent the learning of other less frequent but equally informative features.
Recently, the connectionist temporal classification (CTC) model coupled with recurrent (RNN) or convolutional neural networks (CNN), made it… (voir plus) easier to train speech recognition systems in an end-to-end fashion. However in real-valued models, time frame components such as mel-filter-bank energies and the cepstral coefficients obtained from them, together with their first and second order derivatives, are processed as individual elements, while a natural alternative is to process such components as composed entities. We propose to group such elements in the form of quaternions and to process these quaternions using the established quaternion algebra. Quaternion numbers and quaternion neural networks have shown their efficiency to process multidimensional inputs as entities, to encode internal dependencies, and to solve many tasks with less learning parameters than real-valued models. This paper proposes to integrate multiple feature views in quaternion-valued convolutional neural network (QCNN), to be used for sequence-to-sequence mapping with the CTC model. Promising results are reported using simple QCNNs in phoneme recognition experiments with the TIMIT corpus. More precisely, QCNNs obtain a lower phoneme error rate (PER) with less learning parameters than a competing model based on real-valued CNNs.
Online speech recognition is crucial for developing natural human-machine interfaces. This modality, however, is significantly more challeng… (voir plus)ing than off-line ASR, since real-time/low-latency constraints inevitably hinder the use of future information, that is known to be very helpful to perform robust predictions. A popular solution to mitigate this issue consists of feeding neural acoustic models with context windows that gather some future frames. This introduces a latency which depends on the number of employed look-ahead features. This paper explores a different approach, based on estimating the future rather than waiting for it. Our technique encourages the hidden representations of a unidirectional recurrent network to embed some useful information about the future. Inspired by a recently proposed technique called Twin Networks, we add a regularization term that forces forward hidden states to be as close as possible to cotemporal backward ones, computed by a "twin" neural network running backwards in time. The experiments, conducted on a number of datasets, recurrent architectures, input features, and acoustic conditions, have shown the effectiveness of this approach. One important advantage is that our method does not introduce any additional computation at test time if compared to standard unidirectional recurrent networks.
Although exploration in reinforcement learning is well understood from a theoretical point of view, provably correct methods remain impracti… (voir plus)cal. In this paper we study the interplay between exploration and approximation, what we call approximate exploration. Our main goal is to further our theoretical understanding of pseudo-count based exploration bonuses (Bellemare et al., 2016), a practical exploration scheme based on density modelling. As a warm-up, we quantify the performance of an exploration algorithm, MBIE-EB (Strehl and Littman, 2008), when explicitly combined with state aggregation. This allows us to confirm that, as might be expected, approximation allows the agent to trade off between learning speed and quality of the learned policy. Next, we show how a given density model can be related to an abstraction and that the corresponding pseudo-count bonus can act as a substitute in MBIE-EB combined with this abstraction, but may lead to either under- or over-exploration. Then, we show that a given density model also defines an implicit abstraction, and find a surprising mismatch between pseudo-counts derived either implicitly or explicitly. Finally we derive a new pseudo-count bonus alleviating this issue.
The biological plausibility of the backpropagation algorithm has long been doubted by neuroscientists. Two major reasons are that neurons wo… (voir plus)uld need to send two different types of signal in the forward and backward phases, and that pairs of neurons would need to communicate through symmetric bidirectional connections. We present a simple two-phase learning procedure for fixed point recurrent networks that addresses both these issues. In our model, neurons perform leaky integration and synaptic weights are updated through a local mechanism. Our learning method generalizes Equilibrium Propagation to vector field dynamics, relaxing the requirement of an energy function. As a consequence of this generalization, the algorithm does not compute the true gradient of the objective function, but rather approximates it at a precision which is proven to be directly related to the degree of symmetry of the feedforward and feedback weights. We show experimentally that our algorithm optimizes the objective function.
The paper provides a methodological contribution at the intersection of machine learning and operations research. Namely, we propose a metho… (voir plus)dology to quickly predict solution summaries (i.e., solution descriptions at a given level of detail) to discrete stochastic optimization problems. We approximate the solutions based on supervised learning and the training dataset consists of a large number of deterministic problems that have been solved independently and offline. Uncertainty regarding a missing subset of the inputs is addressed through sampling and aggregation methods.
Our motivating application concerns booking decisions of intermodal containers on double-stack trains. Under perfect information, this is the so-called load planning problem and it can be formulated by means of integer linear programming. However, the formulation cannot be used for the application at hand because of the restricted computational budget and unknown container weights. The results show that standard deep learning algorithms allow one to predict descriptions of solutions with high accuracy in very short time (milliseconds or less).
Learning inter-domain mappings from unpaired data can improve performance in structured prediction tasks, such as image segmentation, by red… (voir plus)ucing the need for paired data. CycleGAN was recently proposed for this problem, but critically assumes the underlying inter-domain mapping is approximately deterministic and one-to-one. This assumption renders the model ineffective for tasks requiring flexible, many-to-many mappings. We propose a new model, called Augmented CycleGAN, which learns many-to-many mappings between domains. We examine Augmented CycleGAN qualitatively and quantitatively on several image datasets.
2018-07-03
Proceedings of the 35th International Conference on Machine Learning (publié)
Normalizing flows and autoregressive models have been successfully combined to produce state-of-the-art results in density estimation, via M… (voir plus)asked Autoregressive Flows (MAF), and to accelerate state-of-the-art WaveNet-based speech synthesis to 20x faster than real-time, via Inverse Autoregressive Flows (IAF). We unify and generalize these approaches, replacing the (conditionally) affine univariate transformations of MAF/IAF with a more general class of invertible univariate transformations expressed as monotonic neural networks. We demonstrate that the proposed neural autoregressive flows (NAF) are universal approximators for continuous probability distributions, and their greater expressivity allows them to better capture multimodal target distributions. Experimentally, NAF yields state-of-the-art performance on a suite of density estimation tasks and outperforms IAF in variational autoencoders trained on binarized MNIST.
2018-07-03
Proceedings of the 35th International Conference on Machine Learning (publié)
We propose a two-stage neural model to tackle question generation from documents. First, our model estimates the probability that word seque… (voir plus)nces in a document are ones that a human would pick when selecting candidate answers by training a neural key-phrase extractor on the answers in a question-answering corpus. Predicted key phrases then act as target answers and condition a sequence-to-sequence question-generation model with a copy mechanism. Empirically, our key-phrase extraction model significantly outperforms an entity-tagging baseline and existing rule-based approaches. We further demonstrate that our question generation system formulates fluent, answerable questions from key phrases. This two-stage system could be used to augment or generate reading comprehension datasets, which may be leveraged to improve machine reading systems or in educational settings.