Le Studio d'IA pour le climat de Mila vise à combler l’écart entre la technologie et l'impact afin de libérer le potentiel de l'IA pour lutter contre la crise climatique rapidement et à grande échelle.
Le programme a récemment publié sa première note politique, intitulée « Considérations politiques à l’intersection des technologies quantiques et de l’intelligence artificielle », réalisée par Padmapriya Mohan.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Is Exploration or Optimization the Problem for Deep Reinforcement Learning?
In the era of deep reinforcement learning, making progress is more complex, as the collected experience must be compressed into a deep model… (voir plus) for future exploitation and sampling. Many papers have shown that training a deep learning policy under the changing state and action distribution leads to sub-optimal performance even collapse. This naturally leads to the concern that even if the community creates improved exploration algorithms or reward objectives, will those improvements fall on the \textit{deaf ears} of optimization difficulties.
This work proposes a new \textit{pracitcal} sub-optimality estimator to determine optimization limitations of deep reinforcement learning algorithms. Through experiments acrossenvironments and RL algorithms, it is shown that the difference between the best data generated is
Speech holds promise as a cost-effective and non-invasive biomarker for neurological conditions such as Parkinson's disease (PD). While deep… (voir plus) learning systems trained on raw audio can find subtle signals not available from hand-crafted features, their black-box nature hinders clinical adoption. To address this, we apply sparse autoencoders (SAEs) to uncover interpretable internal representations from a speech-based PD detection system. We introduce a novel mask-based activation for adapting SAEs to small biomedical datasets, creating sparse disentangled dictionary representations. These dictionary entries are found to have strong associations with characteristic articulatory deficits in PD speech, such as reduced spectral flux and increased spectral flatness in the low-energy regions highlighted by the model attention. We further show that the spectral flux is related to volumetric measurements of the putamen from MRI scans, demonstrating the potential of SAEs to reveal clinically relevant biomarkers for disease monitoring and diagnosis.
We introduce Ollivier-Ricci Curvature (ORC) as an information-geometric tool for analyzing the local structure of reinforcement learning (RL… (voir plus)) environments. We establish a novel connection between ORC and the Successor Representation (SR), enabling a geometric interpretation of environment dynamics decoupled from reward signals. Our analysis shows that states with positive and negative ORC values correspond to regions where random walks converge and diverge respectively, which are often critical for effective exploration. ORC is highly correlated with established environment complexity metrics, yet integrates naturally with standard RL frameworks based on SR and provides both global and local complexity measures. Leveraging this property, we propose an ORC-based intrinsic reward that guides agents toward divergent regions and away from convergent traps. Empirical results demonstrate that our curvature-driven reward substantially improves exploration performance across diverse environments, outperforming both random and count-based intrinsic baselines.
We introduce Ollivier-Ricci Curvature (ORC) as an information-geometric tool for analyzing the local structure of reinforcement learning (RL… (voir plus)) environments. We establish a novel connection between ORC and the Successor Representation (SR), enabling a geometric interpretation of environment dynamics decoupled from reward signals. Our analysis shows that states with positive and negative ORC values correspond to regions where random walks converge and diverge respectively, which are often critical for effective exploration. ORC is highly correlated with established environment complexity metrics, yet integrates naturally with standard RL frameworks based on SR and provides both global and local complexity measures. Leveraging this property, we propose an ORC-based intrinsic reward that guides agents toward divergent regions and away from convergent traps. Empirical results demonstrate that our curvature-driven reward substantially improves exploration performance across diverse environments, outperforming both random and count-based intrinsic baselines.
We introduce Ollivier-Ricci Curvature (ORC) as an information-geometric tool for analyzing the local structure of reinforcement learning (RL… (voir plus)) environments. We establish a novel connection between ORC and the Successor Representation (SR), enabling a geometric interpretation of environment dynamics decoupled from reward signals. Our analysis shows that states with positive and negative ORC values correspond to regions where random walks converge and diverge respectively, which are often critical for effective exploration. ORC is highly correlated with established environment complexity metrics, yet integrates naturally with standard RL frameworks based on SR and provides both global and local complexity measures. Leveraging this property, we propose an ORC-based intrinsic reward that guides agents toward divergent regions and away from convergent traps. Empirical results demonstrate that our curvature-driven reward substantially improves exploration performance across diverse environments, outperforming both random and count-based intrinsic reward baselines.
Large language models (LLMs) exhibit strikingly conflicting behaviors: they can appear steadfastly overconfident in their initial answers wh… (voir plus)ilst at the same time being prone to excessive doubt when challenged. To investigate this apparent paradox, we developed a novel experimental paradigm, exploiting the unique ability to obtain confidence estimates from LLMs without creating memory of their initial judgments -- something impossible in human participants. We show that LLMs -- Gemma 3, GPT4o and o1-preview -- exhibit a pronounced choice-supportive bias that reinforces and boosts their estimate of confidence in their answer, resulting in a marked resistance to change their mind. We further demonstrate that LLMs markedly overweight inconsistent compared to consistent advice, in a fashion that deviates qualitatively from normative Bayesian updating. Finally, we demonstrate that these two mechanisms -- a drive to maintain consistency with prior commitments and hypersensitivity to contradictory feedback -- parsimoniously capture LLM behavior in a different domain. Together, these findings furnish a mechanistic account of LLM confidence that explains both their stubbornness and excessive sensitivity to criticism.
Buildings consume 40% of global energy, with HVAC systems responsible for up to half of that demand. As energy use grows, optimizing HVAC ef… (voir plus)ficiency is critical to meeting climate goals. While reinforcement learning (RL) offers a promising alternative to rule-based control, real-world adoption is limited by poor sample efficiency and generalisation.
We introduce HVAC-GRACE, a graph-based RL framework that models buildings as heterogeneous graphs and integrates spatial message passing directly into temporal GRU gates. This enables each zone to learn control actions informed by both its own history and its structural context.
Our architecture supports zero-shot transfer by learning topology-agnostic functions—but initial experiments reveal that this benefit depends on sufficient conditioned zone connectivity to maintain gradient flow. These findings highlight both the promise and the architectural requirements of scalable, transferable RL for building control
The lack of Equity, Diversity, and Inclusion (EDI) principles in the lifecycle of Artificial Intelligence (AI) technologies in healthcare is… (voir plus) a growing concern. Despite its importance, there is still a gap in understanding the initiatives undertaken to address this issue. This review aims to explore what and how EDI principles have been integrated into the design, development, and implementation of AI studies in healthcare. We followed the scoping review framework by Levac et al. and the Joanna Briggs Institute. A comprehensive search was conducted until April 29, 2022, across MEDLINE, Embase, PsycInfo, Scopus, and SCI-EXPANDED. Only research studies in which the integration of EDI in AI was the primary focus were included. Non-research articles were excluded. Two independent reviewers screened the abstracts and full texts, resolving disagreements by consensus or by consulting a third reviewer. To synthesize the findings, we conducted a thematic analysis and used a narrative description. We adhered to the PRISMA-ScR checklist for reporting scoping reviews. The search yielded 10,664 records, with 42 studies included. Most studies were conducted on the American population. Previous research has shown that AI models improve when socio-demographic factors such as gender and race are considered. Despite frameworks for EDI integration, no comprehensive approach systematically applies EDI principles in AI model development. Additionally, the integration of EDI into the AI implementation phase remains under-explored, and the representation of EDI within AI teams has been overlooked. This review reports on what and how EDI principles have been integrated into the design, development, and implementation of AI technologies in healthcare. We used a thorough search strategy and rigorous methodology, though we acknowledge limitations such as language and publication bias. A comprehensive framework is needed to ensure that EDI principles are considered throughout the AI lifecycle. Future research could focus on strategies to reduce algorithmic bias, assess the long-term impact of EDI integration, and explore policy implications to ensure that AI technologies are ethical, responsible, and beneficial for all.