Portrait de Yue Li

Yue Li

Membre académique associé
Professeur adjoint, McGill University, École d'informatique
Sujets de recherche
Biologie computationnelle

Biographie

J'ai obtenu un doctorat en informatique et biologie computationnelle de l'Université de Toronto en 2014. Avant de me joindre à l’Université McGill, j'ai été associé postdoctoral au Computer Science and Artificial Intelligence Laboratory (CSAIL) du Massachusetts Institute of Technology (MIT) (2015-2018).

Mes recherches portent sur le développement de modèles d'apprentissage probabilistes interprétables et de modèles d'apprentissage profond pour modéliser les données génétiques et épigénétiques, les dossiers de santé électroniques et les données génomiques unicellulaires.

En intégrant systématiquement des données multimodales et longitudinales, je cherche à obtenir des applications qui auront des effets tangibles en médecine computationnelle, y compris la construction de systèmes de recommandation clinique intelligents, la prévision des trajectoires de santé des patients, les prédictions personnalisées de risques polygéniques, la caractérisation des mutations génétiques fonctionnelles multitraits, et la dissection des éléments réglementaires spécifiques au type de cellule qui sont à la base des traits complexes et des maladies chez l'homme. Mon programme de recherche couvre trois domaines principaux impliquant l'apprentissage automatique appliqué à la génomique computationnelle et à la santé.

Étudiants actuels

Postdoctorat - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Co-superviseur⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Collaborateur·rice de recherche - McGill
Doctorat - McGill
Maîtrise recherche - McGill
Doctorat - McGill

Publications

TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare
Qincheng Lu
Hao Xu
Mike He Zhu
MDFD: Study of Distributed Non-IID Scenarios and Frechet Distance-Based Evaluation
Wei Wang
Mingwei Zhang
Ziwen Wu
Qianxi Chen
With the development of distributed machine learning and federated learning, the solution to the data island problem is promoted. People use… (voir plus) computer clusters to train machine learning models on data distributed in different regions. In the early stage of research, researchers usually assume that the data sets of each node are independent identically distribution (IID), but this is a strong assumption, which is challenging to meet in practical applications. Therefore, research on non-IID has become a hot spot in recent years. However, there is no uniform standard for designing and evaluating non-IID scenarios. This paper proposes a Frechet distance-independent non-IID distribution dataset metric MDFD. And we conducted experiments on different types of distributed machine-learning methods in different non-IID scenarios to verify the effectiveness of MDFD.
SDWD: Style Diversity Weighted Distance Evaluates the Intra-Class Data Diversity of Distributed GANs
Wei Wang
Ziwen Wu
Mingwei Zhang
Differential Chromatin Architecture and Risk Variants in Deep Layer Excitatory Neurons and Grey Matter Microglia Contribute to Major Depressive Disorder
Anjali Chawla
Wenmin Zhang
Malosree Maitra
Reza Rahimian
Haruka Mitsuhashi
MA Davoli
Jenny Yang
Gary Gang Chen
Ryan Denniston
Deborah Mash
Naguib Mechawar
Matthew Suderman
Corina Nagy
Gustavo Turecki
GTM-decon: guided-topic modeling of single-cell transcriptomes enables sub-cell-type and disease-subtype deconvolution of bulk transcriptomes
Lakshmipuram Seshadri Swapna
Michael Huang
Guided-topic modelling of single-cell transcriptomes enables sub-cell-type and disease-subtype deconvolution of bulk transcriptomes
Lakshmipuram Seshadri Swapna
Michael Huang
Cell-type composition is an important indicator of health. We present Guided Topic Model for deconvolution (GTM-decon) to automatically infe… (voir plus)r cell-type-specific gene topic distributions from single-cell RNA-seq data for deconvolving bulk transcriptomes. GTM-decon performs competitively on deconvolving simulated and real bulk data compared with the state-of-the-art methods. Moreover, as demonstrated in deconvolving disease transcriptomes, GTM-decon can infer multiple cell-type-specific gene topic distributions per cell type, which captures sub-cell-type variations. GTM-decon can also use phenotype labels from single-cell or bulk data as a guide to infer phenotype-specific gene distributions. In a nested-guided design, GTM-decon identified cell-type-specific differentially expressed genes from bulk breast cancer transcriptomes.
Biomedical discovery through the integrative biomedical knowledge hub (iBKH).
Chang Su
Yufang Hou
Manqi Zhou
Suraj Rajendran
Jacqueline R.M. A. Maasch
Zehra Abedi
Haotan Zhang
Zilong Bai
Anthony Cuturrufo
Winston Guo
Fayzan F. Chaudhry
Gregory Ghahramani
Feixiong Cheng
Rui Zhang
Steven T. DeKosky
Jiang Bian
Yi Wang
Single-cell multi-omic topic embedding reveals cell-type-specific and COVID-19 severity-related immune signatures
Manqi Zhou
Hao Zhang
Zilong Bai
Yi Wang
The advent of single-cell multi-omics sequencing technology makes it possible for re-searchers to leverage multiple modalities for individua… (voir plus)l cells and explore cell heterogeneity. However, the high dimensional, discrete, and sparse nature of the data make the downstream analysis particularly challenging. Most of the existing computational methods for single-cell data analysis are either limited to single modality or lack flexibility and interpretability. In this study, we propose an interpretable deep learning method called multi-omic embedded topic model (moETM) to effectively perform integrative analysis of high-dimensional single-cell multimodal data. moETM integrates multiple omics data via a product-of-experts in the encoder for efficient variational inference and then employs multiple linear decoders to learn the multi-omic signatures of the gene regulatory programs. Through comprehensive experiments on public single-cell transcriptome and chromatin accessibility data (i.e., scRNA+scATAC), as well as scRNA and proteomic data (i.e., CITE-seq), moETM demonstrates superior performance compared with six state-of-the-art single-cell data analysis methods on seven publicly available datasets. By applying moETM to the scRNA+scATAC data in human bone marrow mononuclear cells (BMMCs), we identified sequence motifs corresponding to the transcription factors that regulate immune gene signatures. Applying moETM analysis to CITE-seq data from the COVID-19 patients revealed not only known immune cell-type-specific signatures but also composite multi-omic biomarkers of critical conditions due to COVID-19, thus providing insights from both biological and clinical perspectives.
Modeling electronic health record data using an end-to-end knowledge-graph-informed topic model
Yuesong Zou
Ahmad Pesaranghader
Aman Verma
MixEHR-Guided: A guided multi-modal topic modeling approach for large-scale automatic phenotyping using the electronic health record
Yuri Ahuja
Yuesong Zou
Aman Verma
Automatic Phenotyping by a Seed-guided Topic Model
Yuanyi Hu
Aman Verma
Electronic health records (EHRs) provide rich clinical information and the opportunities to extract epidemiological patterns to understand a… (voir plus)nd predict patient disease risks with suitable machine learning methods such as topic models. However, existing topic models do not generate identifiable topics each predicting a unique phenotype. One promising direction is to use known phenotype concepts to guide topic inference. We present a seed-guided Bayesian topic model called MixEHR-Seed with 3 contributions: (1) for each phenotype, we infer a dual-form of topic distribution: a seed-topic distribution over a small set of key EHR codes and a regular topic distribution over the entire EHR vocabulary; (2) we model age-dependent disease progression as Markovian dynamic topic priors; (3) we infer seed-guided multi-modal topics over distinct EHR data types. For inference, we developed a variational inference algorithm. Using MixEHR-Seed, we inferred 1569 PheCode-guided phenotype topics from an EHR database in Quebec, Canada covering 1.3 million patients for up to 20-year follow-up with 122 million records for 8539 and 1126 unique diagnostic and drug codes, respectively. We observed (1) accurate phenotype prediction by the guided topics, (2) clinically relevant PheCode-guided disease topics, (3) meaningful age-dependent disease prevalence. Source code is available at GitHub: https://github.com/li-lab-mcgill/MixEHR-Seed.
Modeling electronic health record data using a knowledge-graph-embedded topic model
Yuesong Zou
Ahmad Pesaranghader
Aman Verma
The rapid growth of electronic health record (EHR) datasets opens up promising opportunities to understand human diseases in a systematic wa… (voir plus)y. However, effective extraction of clinical knowledge from the EHR data has been hindered by its sparsity and noisy information. We present KG-ETM, an end-to-end knowledge graph-based multimodal embedded topic model. KG-ETM distills latent disease topics from EHR data by learning the embedding from the medical knowledge graphs. We applied KG-ETM to a large-scale EHR dataset consisting of over 1 million patients. We evaluated its performance based on EHR reconstruction and drug imputation. KG-ETM demonstrated superior performance over the alternative methods on both tasks. Moreover, our model learned clinically meaningful graph-informed embedding of the EHR codes. In additional, our model is also able to discover interpretable and accurate patient representations for patient stratification and drug recommendations.