Rejoignez-nous le 19 novembre pour la troisième édition du concours de vulgarisation scientifique de Mila, où les étudiant·e·s présenteront leurs recherches complexes en trois minutes devant un jury.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Sophia Garrel
Alumni
Publications
Reframing AI-for-Good: Radical Questioning in AI for Human Trafficking Interventions
This paper introduces Radical Questioning (RQ), a structured, pre-design ethics framework developed to assess whether artificial intelligenc… (voir plus)e (AI) should be applied to complex social problems rather than merely how. While much of responsible AI development focuses on aligning systems with principles such as fairness, transparency, and accountability, it often begins after the decision to build has already been made, implicitly treating the deployment of AI as a given rather than a question in itself. In domains such as human trafficking, marked by contested definitions, systemic injustice, and deep stakeholder asymmetries, such assumptions can obscure foundational ethical concerns. RQ offers an upstream, deliberative process for surfacing these concerns before design begins. Drawing from critical theory, participatory ethics, and relational responsibility, RQ formalizes a five-step framework to interrogate problem framings, confront techno-solutionist tendencies, and reflect on the moral legitimacy of intervention. Developed through interdisciplinary collaboration and engagement with survivor-led organizations, RQ was piloted in the domain of human trafficking (HT) which is a particularly high-stakes and ethically entangled application area. Its use led to a fundamental design shift: away from automated detection tools and toward survivor-controlled, empowerment-based technologies. We argue that RQ's novelty lies in both its temporal position, i.e, prior to technical design, and its orientation toward domains where harm is structural and ethical clarity cannot be achieved through one-size-fits-all solutions. RQ thus addresses a critical gap between abstract principles of responsible AI and the lived ethical demands of real-world deployment.
2025-10-15
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (publié)