Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Sophia Garrel
Alumni
Publications
Reframing AI-for-Good: Radical Questioning in AI for Human Trafficking Interventions
This paper introduces Radical Questioning (RQ), a structured, pre-design ethics framework developed to assess whether artificial intelligenc… (see more)e (AI) should be applied to complex social problems rather than merely how. While much of responsible AI development focuses on aligning systems with principles such as fairness, transparency, and accountability, it often begins after the decision to build has already been made, implicitly treating the deployment of AI as a given rather than a question in itself. In domains such as human trafficking, marked by contested definitions, systemic injustice, and deep stakeholder asymmetries, such assumptions can obscure foundational ethical concerns. RQ offers an upstream, deliberative process for surfacing these concerns before design begins. Drawing from critical theory, participatory ethics, and relational responsibility, RQ formalizes a five-step framework to interrogate problem framings, confront techno-solutionist tendencies, and reflect on the moral legitimacy of intervention. Developed through interdisciplinary collaboration and engagement with survivor-led organizations, RQ was piloted in the domain of human trafficking (HT) which is a particularly high-stakes and ethically entangled application area. Its use led to a fundamental design shift: away from automated detection tools and toward survivor-controlled, empowerment-based technologies. We argue that RQ's novelty lies in both its temporal position, i.e, prior to technical design, and its orientation toward domains where harm is structural and ethical clarity cannot be achieved through one-size-fits-all solutions. RQ thus addresses a critical gap between abstract principles of responsible AI and the lived ethical demands of real-world deployment.
2025-10-15
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (published)