Portrait de Shirin A. Enger

Shirin A. Enger

Membre académique associé
Professeure agrégée, McGill University, Département d'oncologie
Sujets de recherche
Apprentissage automatique médical
Apprentissage profond
Biologie computationnelle

Biographie

Shirin Abbasinejad Enger est professeure agrégée à l'Unité de physique médicale du Département d'oncologie Gerald Bronfman de l’Université McGill, directrice de l'Unité de physique médicale et titulaire d'une chaire de recherche du Canada de niveau 2 en physique médicale. Elle est également chercheuse principale à l'Institut Lady Davis de recherches médicales et au Centre de cancérologie Segal de l'Hôpital général juif. Mme Enger a obtenu un doctorat de l'Université d'Uppsala en 2009 et a été boursière postdoctorale à l'Université Laval de 2009 à 2011. Elle a joué un rôle de premier plan au sein de plusieurs groupes de travail et comités nationaux et internationaux.

Étudiants actuels

Doctorat - McGill
Doctorat - McGill
Postdoctorat - McGill
Doctorat - McGill
Doctorat - McGill
Doctorat - McGill
Doctorat - McGill
Postdoctorat - McGill
Doctorat - McGill

Publications

Deep learning for high-resolution dose prediction in high dose rate brachytherapy for breast cancer treatment
Sébastien Quetin
Boris Bahoric
Farhad Maleki
Objective. Monte Carlo (MC) simulations are the benchmark for accurate radiotherapy dose calculations, notably in patient-specific high dose… (voir plus) rate brachytherapy (HDR BT), in cases where considering tissue heterogeneities is critical. However, the lengthy computational time limits the practical application of MC simulations. Prior research used deep learning (DL) for dose prediction as an alternative to MC simulations. While accurate dose predictions akin to MC were attained, graphics processing unit limitations constrained these predictions to large voxels of 3 mm × 3 mm × 3 mm. This study aimed to enable dose predictions as accurate as MC simulations in 1 mm × 1 mm × 1 mm voxels within a clinically acceptable timeframe. Approach. Computed tomography scans of 98 breast cancer patients treated with Iridium-192-based HDR BT were used: 70 for training, 14 for validation, and 14 for testing. A new cropping strategy based on the distance to the seed was devised to reduce the volume size, enabling efficient training of 3D DL models using 1 mm × 1 mm × 1 mm dose grids. Additionally, novel DL architecture with layer-level fusion were proposed to predict MC simulated dose to medium-in-medium (D m,m ). These architectures fuse information from TG-43 dose to water-in-water (D w,w ) with patient tissue composition at the layer-level. Different inputs describing patient body composition were investigated. Main results. The proposed approach demonstrated state-of-the-art performance, on par with the MC D m,m maps, but 300 times faster. The mean absolute percent error for dosimetric indices between the MC and DL-predicted complete treatment plans was 0.17% ± 0.15% for the planning target volume V 100, 0.30% ± 0.32% for the skin D 2cc , 0.82% ± 0.79% for the lung D 2cc , 0.34% ± 0.29% for the chest wall D 2cc and 1.08% ± 0.98% for the heart D 2cc . Significance. Unlike the time-consuming MC simulations, the proposed novel strategy efficiently converts TG-43 D w,w maps into precise D m,m maps at high resolution, enabling clinical integration.
Aleatoric and epistemic uncertainty extraction of patient-specific deep learning-based dose predictions in LDR prostate brachytherapy
Francisco Berumen
Samuel Ouellet
Luc Beaulieu
RapidBrachyTG43: A Geant4‐based TG‐43 parameter and dose calculation module for brachytherapy dosimetry
Jonathan Kalinowski
Investigation of the Dosimetry Characteristics of the GAFCHROMIC® EBT3 Film Response to Alpha Particle Irradiation
Mélodie Cyr
Victor D. Martinez
S. Devic
Nada Tomic
David F. Lewis
Dosimetry of [18F]TRACK, the first PET tracer for imaging of TrkB/C receptors in humans
Alexander Thiel
Alexey Kostikov
Hailey Ahn
Youstina Daoud
Jean-Paul Soucy
Stephan Blinder
Carolin Jaworski
Carmen Wängler
Björn Wängler
Freimut Juengling
Ralf Schirrmacher
Transparent Anomaly Detection via Concept-based Explanations
Laya Rafiee Sevyeri
Ivaxi Sheth
Farhood Farahnak
AAPM Medical Physics Practice Guideline 14.a: Yttrium‐90 microsphere radioembolization
Nathan C. Busse
Muthana S. A. L. Al‐Ghazi
Nadine Abi‐Jaoudeh
Diane Alvarez
Ahmet S. Ayan
Erli Chen
Michael D. Chuong
William A. Dezarn
Stephen A. Graves
Robert F. Hobbs
Mary Ellen Jafari
S. Peter Kim
Nichole M. Maughan
Andrew M. Polemi
Jennifer R. Stickel
M-TAG: A modular teaching-aid for Geant4
Liam Carroll
122 Is Selenium-75 a Feasible HDR Brachytherapy Source?
Jake Reid
Jonathan Kalinowski
A. Armstrong
John Munro
124 Development of a Novel Dosimetry Software for Patient-Specific Intravascular Brachytherapy Treatment Planning on Optical Coherence Tomography Images
Maryam Rahbaran
Jonathan Kalinowski
James Man Git Tsui
Joseph DeCunha
Kevin Croce
Brian Bergmark
Philip Devlin
125 Toward the Translation of Rectal Intensity Modulated Brachytherapy for Feasibility and Safety Studies
Jonathan Kalinowski
163 Evaluating the Inter-Observer Variability in the Delineation of Rectal Lesions in Endoscopy Images
A. Thibodeau-Antonacci
Corey Miller
L. Weishaupt
Aurélie Garant
T. Vuong
P. Nicolaï