Portrait de Shirin A. Enger

Shirin A. Enger

Membre académique associé
Professeure agrégée, McGill University, Département d'oncologie
Sujets de recherche
Apprentissage automatique médical
Apprentissage profond
Biologie computationnelle

Biographie

Shirin Abbasinejad Enger est professeure agrégée à l'Unité de physique médicale du Département d'oncologie Gerald Bronfman de l’Université McGill, directrice de l'Unité de physique médicale et titulaire d'une chaire de recherche du Canada de niveau 2 en physique médicale. Elle est également chercheuse principale à l'Institut Lady Davis de recherches médicales et au Centre de cancérologie Segal de l'Hôpital général juif. Mme Enger a obtenu un doctorat de l'Université d'Uppsala en 2009 et a été boursière postdoctorale à l'Université Laval de 2009 à 2011. Elle a joué un rôle de premier plan au sein de plusieurs groupes de travail et comités nationaux et internationaux.

Étudiants actuels

Doctorat - McGill
Doctorat - McGill
Postdoctorat - McGill
Doctorat - McGill
Doctorat - McGill
Doctorat - McGill
Doctorat - McGill
Postdoctorat - McGill
Doctorat - McGill

Publications

A MC-based anthropomorphic test case for commissioning model-based dose calculation in interstitial breast 192-Ir HDR brachytherapy.
Vasiliki Peppa
Rowan M. Thomson
Gabriel P. Fonseca
Choonik Lee
Joseph N. E. Lucero
Firas Mourtada
Frank‐André Siebert
Javier Vijande
Panagiotis Papagiannis
PURPOSE To provide the first clinical test case for commissioning of 192 Ir brachytherapy model-based dose calculation algorithms (MBDCAs) a… (voir plus)ccording to the AAPM TG-186 report workflow. ACQUISITION AND VALIDATION METHODS A computational patient phantom model was generated from a clinical multi-catheter 192 Ir HDR breast brachytherapy case. Regions of interest (ROIs) were contoured and digitized on the patient CT images and the model was written to a series of DICOM CT images using MATLAB. The model was imported into two commercial treatment planning systems (TPSs) currently incorporating an MBDCA. Identical treatment plans were prepared using a generic 192 Ir HDR source and the TG-43-based algorithm of each TPS. This was followed by dose to medium in medium calculations using the MBDCA option of each TPS. Monte Carlo (MC) simulation was performed in the model using three different codes and information parsed from the treatment plan exported in DICOM radiation therapy (RT) format. Results were found to agree within statistical uncertainty and the dataset with the lowest uncertainty was assigned as the reference MC dose distribution. DATA FORMAT AND USAGE NOTES The dataset is available online at http://irochouston.mdanderson.org/rpc/BrachySeeds/BrachySeeds/index.html,https://doi.org/10.52519/00005. Files include the treatment plan for each TPS in DICOM RT format, reference MC dose data in RT Dose format, as well as a guide for database users and all files necessary to repeat the MC simulations. POTENTIAL APPLICATIONS The dataset facilitates the commissioning of brachytherapy MBDCAs using TPS embedded tools and establishes a methodology for the development of future clinical test cases. It is also useful to non-MBDCA adopters for intercomparing MBDCAs and exploring their benefits and limitations, as well as to brachytherapy researchers in need of a dosimetric and/or a DICOM RT information parsing benchmark. Limitations include specificity in terms of radionuclide, source model, clinical scenario, and MBDCA version used for its preparation.
OC-0290 Investigation of the feasibility of selenium-75 as a viable brachytherapy source
J. Reid
Jonathan Kalinowski
J. Munro
A. Armstrong
PD-0334 Techniques to optimize auto-segmentation of small OARs in pediatric patients undergoing CSI
J. Tsui
M. Popovic
O. Ates
C. Hua
J. Schneider
S. Skamene
C. Freeman
PD-0505 Monte Carlo simulated correction factors of a novel phantom for brachytherapy dosimetry audits
K. Chelminski
R. Abdulrahim
A. Dimitriadis
E. Granizo-Roman
Jonathan Kalinowski
G. Azangwe
J. Swamidas
PD-0586 Design and assembly of a non-invasive radiation detector to measure the AIF in dynamic PET.
Liam Carroll
Y. Daoud
PO-1632 deep learning-based automatic segmentation of rectal tumors in endoscopy images
A. Thibodeau-Antonacci
L. Weishaupt
Aurélie Garant
C. Miller
T. Vuong
P. Nicolaï
PO-2166 Commissioning of new rectal applicator using electronic brachytherapy source
Nada Tomic
L. Liang
A. Esmaelbeigi
Jonathan Kalinowski
T. Vuong
S. Devic
PO-2225 Characterization of the RBE of various photon radiation qualities on human cancer cell lines
N. Chabaytah
J. Babik
Jian Li
B. Behmand
T. Connell
M. Evans
R. Ruo
H. Bekerat
T. Vuong
Fast D
<sub>M,M</sub> calculation in LDR brachytherapy using deep learning methods
Francisco Berumen
Luc Beaulieu
Applying the column generation method to the intensity modulated high dose rate brachytherapy inverse planning problem
Majd Antaki
Marc-André Renaud
Marc Morcos
Jan Seuntjens
Effects of incoming particle energy and cluster size on the G-value of hydrated electrons.
Alaina Bui
H. Bekerat
Lilian Childress
Jack C Sankey
Jan Seuntjens
Image-Guided Brachytherapy for Rectal Cancer: Reviewing the Past Two Decades of Clinical Investigation
T. Vuong
Aurélie Garant
Veronique Vendrely
Remi Nout
André-Guy Martin
Ervin Podgorsak
Belal Moftah
S. Devic