Portrait de Razvan Pascanu

Razvan Pascanu

Membre affilié
Chercheur scientifique principal, Google DeepMind
Sujets de recherche
Apprentissage à quelques exemples
Apprentissage continu
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Apprentissage profond géométrique
Apprentissage tout au long de la vie
Généralisation
Interprétabilité mécanistique
Optimisation
Réseaux de neurones
Réseaux de neurones en graphes
Réseaux de neurones profonds
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique

Publications

On the generalization of language models from in-context learning and finetuning: a controlled study
Andrew Lampinen
Arslan Chaudhry
Stephanie C.Y. Chan
Cody Wild
Diane Wan
Alex Ku
Jorg Bornschein
Murray Shanahan
James L McClelland
LLMs are Greedy Agents: Effects of RL Fine-tuning on Decision-Making Abilities
Thomas Schmied
Jorg Bornschein
Jordi Grau-Moya
Markus Wulfmeier
Why do LLMs attend to the first token?
Federico Barbero
'Alvaro Arroyo
Xiangming Gu
Christos Perivolaropoulos
Michael M. Bronstein
Petar Velivckovi 'c
Why do LLMs attend to the first token?
Federico Barbero
'Alvaro Arroyo
Xiangming Gu
Christos Perivolaropoulos
Michael M. Bronstein
Petar Velivckovi 'c
NoProp: Training Neural Networks without Back-propagation or Forward-propagation
Qinyu Li
Yee Whye Teh
NoProp: Training Neural Networks without Back-propagation or Forward-propagation
Qinyu Li
Yee Whye Teh
How do language models learn facts? Dynamics, curricula and hallucinations
Nicolas Zucchet
Jorg Bornschein
Stephanie Chan
Andrew Lampinen
Soham De
How do language models learn facts? Dynamics, curricula and hallucinations
Nicolas Zucchet
Jorg Bornschein
Stephanie Chan
Andrew Lampinen
Soham De
From Markov to Laplace: How Mamba In-Context Learns Markov Chains
Marco Bondaschi
Nived Rajaraman
Xiuying Wei
Kannan Ramchandran
Caglar Gulcehre
Michael C. Gastpar
Ashok Vardhan Makkuva
From Markov to Laplace: How Mamba In-Context Learns Markov Chains
Marco Bondaschi
Nived Rajaraman
Xiuying Wei
Kannan Ramchandran
Caglar Gulcehre
Michael C. Gastpar
Ashok Vardhan Makkuva
While transformer-based language models have driven the AI revolution thus far, their computational complexity has spurred growing interest … (voir plus)in viable alternatives, such as structured state space sequence models (SSMs) and Selective SSMs. Among these, Mamba (S6) and its variant Mamba-2 have shown remarkable inference speed ups over transformers while achieving comparable or superior performance on complex language modeling tasks. However, despite these architectural innovations and empirical successes, the fundamental learning capabilities of Mamba remain poorly understood. In this paper, we address this gap by studying in-context learning (ICL) on Markov chains and uncovering a surprising phenomenon: unlike transformers, even a single-layer Mamba efficiently learns the in-context Laplacian smoothing estimator, which is both Bayes and minimax optimal, for all Markovian orders. To explain this, we theoretically characterize the representation capacity of Mamba and reveal the fundamental role of convolution in enabling it to represent the optimal Laplacian smoothing. These theoretical insights align strongly with empirical results and, to the best of our knowledge, represent the first formal connection between Mamba and optimal statistical estimators. Finally, we outline promising research directions inspired by these findings.
Maxwell's Demon at Work: Efficient Pruning by Leveraging Saturation of Neurons
Simon Dufort-Labbé
Pierluca D'Oro
Evgenii Nikishin
Aristide Baratin
Agency Is Frame-Dependent
David Abel
Andre Barreto
Michael Bowling
Will Dabney
Shi Dong
Steven Hansen
Anna Harutyunyan
Clare Lyle
Georgios Piliouras
Jonathan Richens
Mark Rowland
Tom Schaul
Satinder Singh
Agency is a system's capacity to steer outcomes toward a goal, and is a central topic of study across biology, philosophy, cognitive science… (voir plus), and artificial intelligence. Determining if a system exhibits agency is a notoriously difficult question: Dennett (1989), for instance, highlights the puzzle of determining which principles can decide whether a rock, a thermostat, or a robot each possess agency. We here address this puzzle from the viewpoint of reinforcement learning by arguing that agency is fundamentally frame-dependent: Any measurement of a system's agency must be made relative to a reference frame. We support this claim by presenting a philosophical argument that each of the essential properties of agency proposed by Barandiaran et al. (2009) and Moreno (2018) are themselves frame-dependent. We conclude that any basic science of agency requires frame-dependence, and discuss the implications of this claim for reinforcement learning.