Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
The softmax function is a fundamental building block of deep neural networks, commonly used to define output distributions in classification… (voir plus) tasks or attention weights in transformer architectures. Despite its widespread use and proven effectiveness, its influence on learning dynamics and learned representations remains poorly understood, limiting our ability to optimize model behavior. In this paper, we study the pivotal role of the softmax function in shaping the model's representation. We introduce the concept of rank deficit bias - a phenomenon in which softmax-based deep networks find solutions of rank much lower than the number of classes. This bias depends on the softmax function's logits norm, which is implicitly influenced by hyperparameters or directly modified by softmax temperature. Furthermore, we demonstrate how to exploit the softmax dynamics to learn compressed representations or to enhance their performance on out-of-distribution data. We validate our findings across diverse architectures and real-world datasets, highlighting the broad applicability of temperature tuning in improving model performance. Our work provides new insights into the mechanisms of softmax, enabling better control over representation learning in deep neural networks.