Portrait de Pooneh Mousavi n'est pas disponible

Pooneh Mousavi

Doctorat - Concordia
Superviseur⋅e principal⋅e
Sujets de recherche
Apprentissage profond

Publications

DASB -- Discrete Audio and Speech Benchmark
Discrete audio tokens have recently gained considerable attention for their potential to connect audio and language processing, enabling the… (voir plus) creation of modern multimodal large language models. Ideal audio tokens must effectively preserve phonetic and semantic content along with paralinguistic information, speaker identity, and other details. While several types of audio tokens have been recently proposed, identifying the optimal tokenizer for various tasks is challenging due to the inconsistent evaluation settings in existing studies. To address this gap, we release the Discrete Audio and Speech Benchmark (DASB), a comprehensive leaderboard for benchmarking discrete audio tokens across a wide range of discriminative tasks, including speech recognition, speaker identification and verification, emotion recognition, keyword spotting, and intent classification, as well as generative tasks such as speech enhancement, separation, and text-to-speech. Our results show that, on average, semantic tokens outperform compression tokens across most discriminative and generative tasks. However, the performance gap between semantic tokens and standard continuous representations remains substantial, highlighting the need for further research in this field.
How Should We Extract Discrete Audio Tokens from Self-Supervised Models?
Discrete audio tokens have recently gained attention for their potential to bridge the gap between audio and language processing. Ideal audi… (voir plus)o tokens must preserve content, paralinguistic elements, speaker identity, and many other audio details. Current audio tokenization methods fall into two categories: Semantic tokens, acquired through quantization of Self-Supervised Learning (SSL) models, and Neural compression-based tokens (codecs). Although previous studies have benchmarked codec models to identify optimal configurations, the ideal setup for quantizing pretrained SSL models remains unclear. This paper explores the optimal configuration of semantic tokens across discriminative and generative tasks. We propose a scalable solution to train a universal vocoder across multiple SSL layers. Furthermore, an attention mechanism is employed to identify task-specific influential layers, enhancing the adaptability and performance of semantic tokens in diverse audio applications.
CL-MASR: A Continual Learning Benchmark for Multilingual ASR
How Should We Extract Discrete Audio Tokens from Self-Supervised Models?
WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series