Portrait de Nicolas Ballas n'est pas disponible

Nicolas Ballas

Alumni

Publications

V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning
Mahmoud Assran
Adrien Bardes
David Fan
Quentin Garrido
Russell Howes
Mojtaba Komeili
Matthew J. Muckley
Ammar Rizvi
Claire Roberts
Sergio Arnaud
Abha Gejji
Ada Martin
Francois Robert Hogan
Daniel Dugas
Piotr Bojanowski
Vasil Khalidov
Patrick Labatut
Francisco Massa … (voir 13 de plus)
Marc Szafraniec
K. Krishnakumar
Ying Li
Xiaodong Ma
Franziska Meier
Fair at Meta
Mila - Québec
AI Institute
Polytechnique Montréal
A major challenge for modern AI is to learn to understand the world and learn to act largely by observation. This paper explores a self-supe… (voir plus)rvised approach that combines internet-scale video data with a small amount of interaction data (robot trajectories), to develop models capable of understanding, predicting, and planning in the physical world. We first pre-train an action-free joint-embedding-predictive architecture, V-JEPA 2, on a video and image dataset comprising over 1 million hours of internet video. V-JEPA 2 achieves strong performance on motion understanding (77.3 top-1 accuracy on Something-Something v2) and state-of-the-art performance on human action anticipation (39.7 recall-at-5 on Epic-Kitchens-100) surpassing previous task-specific models. Additionally, after aligning V-JEPA 2 with a large language model, we demonstrate state-of-the-art performance on multiple video question-answering tasks at the 8 billion parameter scale (e.g., 84.0 on PerceptionTest, 76.9 on TempCompass). Finally, we show how self-supervised learning can be applied to robotic planning tasks by post-training a latent action-conditioned world model, V-JEPA 2-AC, using less than 62 hours of unlabeled robot videos from the Droid dataset. We deploy V-JEPA 2-AC zero-shot on Franka arms in two different labs and enable picking and placing of objects using planning with image goals. Notably, this is achieved without collecting any data from the robots in these environments, and without any task-specific training or reward. This work demonstrates how self-supervised learning from web-scale data and a small amount of robot interaction data can yield a world model capable of planning in the physical world.
V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning
Mahmoud Assran
Adrien Bardes
David Fan
Quentin Garrido
Russell Howes
Mojtaba Komeili
Matthew J. Muckley
Ammar Rizvi
Claire Roberts
Sergio Arnaud
Abha Gejji
Ada Martin
Francois Robert Hogan
Daniel Dugas
Piotr Bojanowski
Vasil Khalidov
Patrick Labatut
Francisco Massa … (voir 13 de plus)
Marc Szafraniec
K. Krishnakumar
Yong Li
Xiaodong Ma
Franziska Meier
Fair at Meta
Mila - Québec
AI Institute
Polytechnique Montréal
A major challenge for modern AI is to learn to understand the world and learn to act largely by observation. This paper explores a self-supe… (voir plus)rvised approach that combines internet-scale video data with a small amount of interaction data (robot trajectories), to develop models capable of understanding, predicting, and planning in the physical world. We first pre-train an action-free joint-embedding-predictive architecture, V-JEPA 2, on a video and image dataset comprising over 1 million hours of internet video. V-JEPA 2 achieves strong performance on motion understanding (77.3 top-1 accuracy on Something-Something v2) and state-of-the-art performance on human action anticipation (39.7 recall-at-5 on Epic-Kitchens-100) surpassing previous task-specific models. Additionally, after aligning V-JEPA 2 with a large language model, we demonstrate state-of-the-art performance on multiple video question-answering tasks at the 8 billion parameter scale (e.g., 84.0 on PerceptionTest, 76.9 on TempCompass). Finally, we show how self-supervised learning can be applied to robotic planning tasks by post-training a latent action-conditioned world model, V-JEPA 2-AC, using less than 62 hours of unlabeled robot videos from the Droid dataset. We deploy V-JEPA 2-AC zero-shot on Franka arms in two different labs and enable picking and placing of objects using planning with image goals. Notably, this is achieved without collecting any data from the robots in these environments, and without any task-specific training or reward. This work demonstrates how self-supervised learning from web-scale data and a small amount of robot interaction data can yield a world model capable of planning in the physical world.
V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning
Mahmoud Assran
Adrien Bardes
David Fan
Quentin Garrido
Russell Howes
Mojtaba Komeili
Matthew J. Muckley
Ammar Rizvi
Claire Roberts
Sergio Arnaud
Abha Gejji
Ada Martin
Francois Robert Hogan
Daniel Dugas
Piotr Bojanowski
Vasil Khalidov
Patrick Labatut
Francisco Massa … (voir 13 de plus)
Marc Szafraniec
K. Krishnakumar
Ying Li
Xiaodong Ma
Franziska Meier
Fair at Meta
Mila - Québec
AI Institute
Polytechnique Montréal
A major challenge for modern AI is to learn to understand the world and learn to act largely by observation. This paper explores a self-supe… (voir plus)rvised approach that combines internet-scale video data with a small amount of interaction data (robot trajectories), to develop models capable of understanding, predicting, and planning in the physical world. We first pre-train an action-free joint-embedding-predictive architecture, V-JEPA 2, on a video and image dataset comprising over 1 million hours of internet video. V-JEPA 2 achieves strong performance on motion understanding (77.3 top-1 accuracy on Something-Something v2) and state-of-the-art performance on human action anticipation (39.7 recall-at-5 on Epic-Kitchens-100) surpassing previous task-specific models. Additionally, after aligning V-JEPA 2 with a large language model, we demonstrate state-of-the-art performance on multiple video question-answering tasks at the 8 billion parameter scale (e.g., 84.0 on PerceptionTest, 76.9 on TempCompass). Finally, we show how self-supervised learning can be applied to robotic planning tasks by post-training a latent action-conditioned world model, V-JEPA 2-AC, using less than 62 hours of unlabeled robot videos from the Droid dataset. We deploy V-JEPA 2-AC zero-shot on Franka arms in two different labs and enable picking and placing of objects using planning with image goals. Notably, this is achieved without collecting any data from the robots in these environments, and without any task-specific training or reward. This work demonstrates how self-supervised learning from web-scale data and a small amount of robot interaction data can yield a world model capable of planning in the physical world.
V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning
Mahmoud Assran
Adrien Bardes
David Fan
Quentin Garrido
Russell Howes
Mojtaba Komeili
Matthew J. Muckley
Ammar Rizvi
Claire Roberts
Sergio Arnaud
Abha Gejji
Ada Martin
Francois Robert Hogan
Daniel Dugas
Piotr Bojanowski
Vasil Khalidov
Patrick Labatut
Francisco Massa … (voir 13 de plus)
Marc Szafraniec
K. Krishnakumar
Yong Li
Xiaodong Ma
Franziska Meier
Fair at Meta
Mila - Québec
AI Institute
Polytechnique Montréal
A major challenge for modern AI is to learn to understand the world and learn to act largely by observation. This paper explores a self-supe… (voir plus)rvised approach that combines internet-scale video data with a small amount of interaction data (robot trajectories), to develop models capable of understanding, predicting, and planning in the physical world. We first pre-train an action-free joint-embedding-predictive architecture, V-JEPA 2, on a video and image dataset comprising over 1 million hours of internet video. V-JEPA 2 achieves strong performance on motion understanding (77.3 top-1 accuracy on Something-Something v2) and state-of-the-art performance on human action anticipation (39.7 recall-at-5 on Epic-Kitchens-100) surpassing previous task-specific models. Additionally, after aligning V-JEPA 2 with a large language model, we demonstrate state-of-the-art performance on multiple video question-answering tasks at the 8 billion parameter scale (e.g., 84.0 on PerceptionTest, 76.9 on TempCompass). Finally, we show how self-supervised learning can be applied to robotic planning tasks by post-training a latent action-conditioned world model, V-JEPA 2-AC, using less than 62 hours of unlabeled robot videos from the Droid dataset. We deploy V-JEPA 2-AC zero-shot on Franka arms in two different labs and enable picking and placing of objects using planning with image goals. Notably, this is achieved without collecting any data from the robots in these environments, and without any task-specific training or reward. This work demonstrates how self-supervised learning from web-scale data and a small amount of robot interaction data can yield a world model capable of planning in the physical world.
Locate 3D: Real-World Object Localization via Self-Supervised Learning in 3D
Sergio Arnaud
Paul McVay
Ada Martin
Arjun Majumdar
Krishna Murthy
Phillip Thomas
Ruslan Partsey
Daniel Dugas
Abha Gejji
Alexander Sax
Vincent-Pierre Berges
Mikael Henaff
Ayush Jain
Ang Cao
Ishita Prasad
Mrinal Kalakrishnan
Mahmoud Assran
Oleksandr Maksymets … (voir 2 de plus)
Aravind Rajeswaran
Franziska Meier
Locate 3D: Real-World Object Localization via Self-Supervised Learning in 3D
Sergio Arnaud
Paul McVay
Ada Martin
Arjun Majumdar
Krishna Murthy
Phillip Thomas
Ruslan Partsey
Daniel Dugas
Abha Gejji
Alexander Sax
Vincent-Pierre Berges
Mikael Henaff
Ayush Jain
Ang Cao
Ishita Prasad
Mrinal Kalakrishnan
Mido Assran
Oleksandr Maksymets … (voir 2 de plus)
Aravind Rajeswaran
Franziska Meier
Scaling Language-Free Visual Representation Learning
David Fan
Shengbang Tong
Jiachen Zhu
Zhuang Liu
Xinlei Chen
Amir Bar
Saining Xie
Scaling Language-Free Visual Representation Learning
David Fan
Shengbang Tong
Jiachen Zhu
Zhuang Liu
Xinlei Chen
Amir Bar
Saining Xie
Intuitive physics understanding emerges from self-supervised pretraining on natural videos
Quentin Garrido
Mahmoud Assran
Adrien Bardes
Laurent Najman
Emmanuel Dupoux
We investigate the emergence of intuitive physics understanding in general-purpose deep neural network models trained to predict masked regi… (voir plus)ons in natural videos. Leveraging the violation-of-expectation framework, we find that video prediction models trained to predict outcomes in a learned representation space demonstrate an understanding of various intuitive physics properties, such as object permanence and shape consistency. In contrast, video prediction in pixel space and multimodal large language models, which reason through text, achieve performance closer to chance. Our comparisons of these architectures reveal that jointly learning an abstract representation space while predicting missing parts of sensory input, akin to predictive coding, is sufficient to acquire an understanding of intuitive physics, and that even models trained on one week of unique video achieve above chance performance. This challenges the idea that core knowledge -- a set of innate systems to help understand the world -- needs to be hardwired to develop an understanding of intuitive physics.
Intuitive physics understanding emerges from self-supervised pretraining on natural videos
Quentin Garrido
Mahmoud Assran
Adrien Bardes
Laurent Najman
Emmanuel Dupoux
We investigate the emergence of intuitive physics understanding in general-purpose deep neural network models trained to predict masked regi… (voir plus)ons in natural videos. Leveraging the violation-of-expectation framework, we find that video prediction models trained to predict outcomes in a learned representation space demonstrate an understanding of various intuitive physics properties, such as object permanence and shape consistency. In contrast, video prediction in pixel space and multimodal large language models, which reason through text, achieve performance closer to chance. Our comparisons of these architectures reveal that jointly learning an abstract representation space while predicting missing parts of sensory input, akin to predictive coding, is sufficient to acquire an understanding of intuitive physics, and that even models trained on one week of unique video achieve above chance performance. This challenges the idea that core knowledge -- a set of innate systems to help understand the world -- needs to be hardwired to develop an understanding of intuitive physics.
Revisiting Feature Prediction for Learning Visual Representations from Video
Adrien Bardes
Quentin Garrido
Jean Ponce
Xinlei Chen
Mahmoud Assran
Modeling Caption Diversity in Contrastive Vision-Language Pretraining
Samuel Lavoie
Polina Kirichenko
Mark Ibrahim
Mahmoud Assran
Andrew Gordon Wilson
There are a thousand ways to caption an image. Contrastive Language Pretraining (CLIP) on the other hand, works by mapping an image and its … (voir plus)caption to a single vector -- limiting how well CLIP-like models can represent the diverse ways to describe an image. In this work, we introduce Llip, Latent Language Image Pretraining, which models the diversity of captions that could match an image. Llip's vision encoder outputs a set of visual features that are mixed into a final representation by conditioning on information derived from the text. We show that Llip outperforms non-contextualized baselines like CLIP and SigLIP on a variety of tasks even with large-scale encoders. Llip improves zero-shot classification by an average of 2.9\% zero-shot classification benchmarks with a ViT-G/14 encoder. Specifically, Llip attains a zero-shot top-1 accuracy of 83.5\% on ImageNet outperforming a similarly sized CLIP by 1.4\%. We also demonstrate improvement on zero-shot retrieval on MS-COCO by 6.0\%. We provide a comprehensive analysis of the components introduced by the method and demonstrate that Llip leads to richer visual representations.