Portrait de Maximilian Puelma Touzel n'est pas disponible

Maximilian Puelma Touzel

Alumni

Publications

Simulation System Towards Solving Societal-Scale Manipulation
Austin Welch
Gayatri K
Dan Zhao
Hao Yu
Tom Gibbs
Ethan Kosak-Hine
Busra Tugce Gurbuz
The rise of AI-driven manipulation poses significant risks to societal trust and democratic processes. Yet, studying these effects in real-w… (voir plus)orld settings at scale is ethically and logistically impractical, highlighting a need for simulation tools that can model these dynamics in controlled settings to enable experimentation with possible defenses. We present a simulation environment designed to address this. We elaborate upon the Concordia framework that simulates offline, `real life' activity by adding online interactions to the simulation through social media with the integration of a Mastodon server. Through a variety of means we then improve simulation efficiency and information flow, and add a set of measurement tools, particularly longitudinal surveys of the agents' political positions. We demonstrate the simulator with a tailored example of how partisan manipulation of agents can affect election results.
Regional and Temporal Patterns of Partisan Polarization during the COVID-19 Pandemic in the United States and Canada
C'ecile Amadoro
Gabrielle Desrosiers-Brisebois
Sacha Lévy
Public health measures were among the most polarizing topics debated online during the COVID-19 pandemic. Much of the discussion surrounded … (voir plus)specific events, such as when and which particular interventions came into practise. In this work, we develop and apply an approach to measure subnational and event-driven variation of partisan polarization and explore how these dynamics varied both across and within countries. We apply our measure to a dataset of over 50 million tweets posted during late 2020, a salient period of polarizing discourse in the early phase of the pandemic. In particular, we examine regional variations in both the United States and Canada, focusing on three specific health interventions: lockdowns, masks, and vaccines. We find that more politically conservative regions had higher levels of partisan polarization in both countries, especially in the US where a strong negative correlation exists between regional vaccination rates and degree of polarization in vaccine related discussions. We then analyze the timing, context, and profile of spikes in polarization, linking them to specific events discussed on social media across different regions in both countries. These typically last only a few days in duration, suggesting that online discussions reflect and could even drive changes in public opinion, which in the context of pandemic response impacts public health outcomes across different regions and over time.
Regional and Temporal Patterns of Partisan Polarization during the COVID-19 Pandemic in the United States and Canada
C'ecile Amadoro
Gabrielle Desrosiers-Brisebois
Sacha Lévy
Public health measures were among the most polarizing topics debated online during the COVID-19 pandemic. Much of the discussion surrounded … (voir plus)specific events, such as when and which particular interventions came into practise. In this work, we develop and apply an approach to measure subnational and event-driven variation of partisan polarization and explore how these dynamics varied both across and within countries. We apply our measure to a dataset of over 50 million tweets posted during late 2020, a salient period of polarizing discourse in the early phase of the pandemic. In particular, we examine regional variations in both the United States and Canada, focusing on three specific health interventions: lockdowns, masks, and vaccines. We find that more politically conservative regions had higher levels of partisan polarization in both countries, especially in the US where a strong negative correlation exists between regional vaccination rates and degree of polarization in vaccine related discussions. We then analyze the timing, context, and profile of spikes in polarization, linking them to specific events discussed on social media across different regions in both countries. These typically last only a few days in duration, suggesting that online discussions reflect and could even drive changes in public opinion, which in the context of pandemic response impacts public health outcomes across different regions and over time.
Scalable Approaches for a Theory of Many Minds
A major challenge as we move towards building agents for real-world problems, which could involve a massive number of human and/or machine a… (voir plus)gents, is that we must learn to reason about the behavior of these many other agents. In this paper, we consider the problem of scaling a predictive Theory of Mind (ToM) model to a very large number of interacting agents with a fixed computational budget. Motivated by the limited diversity of agent types, existing approaches to scalable TOM learn versatile single-agent representations for quickly adapting to new agents encountered sequentially. We consider the more general setting that many agents are observed in parallel and formulate the corresponding Theory of Many Minds (ToMM) problem of estimating the joint policy. We frame the scaling behavior of solutions in terms of parameter sharing schemes and in particular propose two parameter-free architectural features that endow models with the ability to exploit action correlations: encoding a multi-agent context, and decoding through an abstracted joint action space. The increased predictive capabilities that have come with foundation models have made it easier to imagine the possibility of using these models to make simulations that imitate the behavior of many agents within complex real-world systems. Being able to perform these simulations in a general-purpose way would not only help make more capable agents, it also would be a very useful capability for applications in social science, political science, and economics.
Performance-gated deliberation: A context-adapted strategy in which urgency is opportunity cost
Performance-gated deliberation: A context-adapted strategy in which urgency is opportunity cost
Finding the right amount of deliberation, between insufficient and excessive, is a hard decision making problem that depends on the value we… (voir plus) place on our time. Average-reward, putatively encoded by tonic dopamine, serves in existing reinforcement learning theory as the opportunity cost of time, including deliberation time. Importantly, this cost can itself vary with the environmental context and is not trivial to estimate. Here, we propose how the opportunity cost of deliberation can be estimated adaptively on multiple timescales to account for non-stationary contextual factors. We use it in a simple decision-making heuristic based on average-reward reinforcement learning (AR-RL) that we call Performance-Gated Deliberation (PGD). We propose PGD as a strategy used by animals wherein deliberation cost is implemented directly as urgency, a previously characterized neural signal effectively controlling the speed of the decision-making process. We show PGD outperforms AR-RL solutions in explaining behaviour and urgency of non-human primates in a context-varying random walk prediction task and is consistent with relative performance and urgency in a context-varying random dot motion task. We make readily testable predictions for both neural activity and behaviour.
Summarizing Societies: Agent Abstraction in Multi-Agent Reinforcement Learning
Agents cannot make sense of many-agent societies through direct consideration of small-scale, low-level agent identities, but instead must r… (voir plus)ecognize emergent collective identities. Here, we take a first step towards a framework for recognizing this structure in large groups of low-level agents so that they can be modeled as a much smaller number of high-level agents—a process that we call agent abstraction. We illustrate this process by extending bisimulation metrics for state abstraction in reinforcement learning to the setting of multi-agent reinforcement learning and analyze a straightforward, if crude, abstraction based on experienced joint actions. It addresses non-stationarity due to other learning agents by improving minimax regret by a intuitive factor. To test if this compression factor provides signal for higher-level agency, we applied it to a large dataset of human play of the popular social dilemma game Diplomacy. We find that it correlates strongly with the degree of ground-truth abstraction of low-level units into the human players.
Continual Learning In Environments With Polynomial Mixing Times
The mixing time of the Markov chain induced by a policy limits performance in real-world continual learning scenarios. Yet, the effect of mi… (voir plus)xing times on learning in continual reinforcement learning (RL) remains underexplored. In this paper, we characterize problems that are of long-term interest to the development of continual RL, which we call scalable MDPs, through the lens of mixing times. In particular, we theoretically establish that scalable MDPs have mixing times that scale polynomially with the size of the problem. We go on to demonstrate that polynomial mixing times present significant difficulties for existing approaches that suffer from myopic bias and stale bootstrapped estimates. To validate the proposed theory, we study the empirical scaling behavior of mixing times with respect to the number of tasks and task switching frequency for pretrained high performing policies on seven Atari games. Our analysis demonstrates both that polynomial mixing times do emerge in practice and how their existence may lead to unstable learning behavior like catastrophic forgetting in continual learning settings.