Portrait de Matt Perich

Matt Perich

Membre académique associé
Professeur adjoint, Université de Montréal, Département de neurosciences
Sujets de recherche
Apprentissage profond
Neurosciences computationnelles
Réseaux de neurones récurrents
Systèmes dynamiques

Biographie

Matthew G. Perich est professeur adjoint au Département de neurosciences de l’Université de Montréal. Son programme de recherche fusionne l’IA et les neurosciences computationnelles avec la neurophysiologie expérimentale et l’ingénierie neuronale, pour étudier comment les cerveaux biologiques coordonnent les comportements moteurs et, ultimement, pour guider le développement de dispositifs neuroprothétiques de prochaine génération pour la réadaptation.

Étudiants actuels

Doctorat - UdeM
Doctorat - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Stagiaire de recherche - Concordia
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - McGill

Publications

Motor cortex latent dynamics 1 encode arm movement direction and 2 urgency independently 3
Andrea Colins Rodriguez
Lee Miller
Mark D. Humphries
10 The fluid movement of an arm is controlled by multiple parameters that can be set 11 independently. Recent studies argue that arm moveme… (voir plus)nts are generated by the collective 12 dynamics of neurons in motor cortex. But how these collective dynamics simultaneously encode 13 and control multiple parameters of movement is an open question. Using a task where monkeys 14 made sequential, varied arm movements, we show that the direction and urgency of arm 15 movements are simultaneously encoded in the low-dimensional trajectories of population 16 activity: each movement’s direction by a fixed, looped neural trajectory and its urgency by how 17 quickly that trajectory was traversed. Network models showed this latent coding is potentially 18 advantageous as it allows the direction and urgency of arm movement to be independently 19 controlled. Our results suggest how low-dimensional neural dynamics can define multiple 20 parameters of goal-directed movement simultaneously. 21
Small, correlated changes in synaptic connectivity may facilitate rapid motor learning
Barbara Feulner
Raeed H. Chowdhury
Lee Miller
Juan A. Gallego
Claudia Clopath
Misinterpreting the horseshoe effect in neuroscience
Timothée Proix
Tomislav Milekovic
Small, correlated changes in synaptic connectivity may facilitate rapid motor learning
Barbara Feulner
Raeed H. Chowdhury
Lee Miller
Juan A. Gallego
Claudia Clopath