Portrait de Mathieu Blanchette

Mathieu Blanchette

Membre académique associé
Directeur et professeur associé, McGill University, École d'informatique
Sujets de recherche
Apprentissage profond
Biologie computationnelle
Réseaux de neurones en graphes

Biographie

Mathieu Blanchette est professeur associé et directeur de l'École d'informatique de l'Université McGill.

Après avoir obtenu un doctorat (Université de Washington, 2002) et un postdoctorat (Université de Californie à Santa Cruz, 2003), il s'est joint à l'École d'informatique de l’Université McGill et a fondé le Laboratoire de génomique computationnelle. Les recherches effectuées par son équipe d’exception ont fait l'objet de plus de 70 publications. Récemment élu membre du Collège de nouveaux chercheurs et créateurs en art et science de la Société royale du Canada, il a été boursier Sloan (2009) et a reçu le prix Outstanding Young Computer Scientist Researcher de l'Association canadienne de l'informatique (2012) ainsi que le prix Chris Overton (2006). Il adore enseigner et superviser les étudiant·e·s, et a d’ailleurs reçu le prix Leo Yaffe pour l'enseignement (2008).

Étudiants actuels

Maîtrise recherche - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill

Publications

Reconstruction of full-length LINE-1 progenitors from ancestral genomes
Laura F Campitelli
Isaac Yellan
Mihai Albu
Marjan Barazandeh
Zain M Patel
Timothy R Hughes
Reconstruction of full-length LINE-1 progenitors from ancestral genomes
Laura F. Campitelli
Isaac Yellan
Mihai Tudor Albu
Marjan Barazandeh
Zain M. Patel
T. Hughes
Abstract Sequences derived from the Long INterspersed Element-1 (L1) family of retrotransposons occupy at least 17% of the human genome, wit… (voir plus)h 67 distinct subfamilies representing successive waves of expansion and extinction in mammalian lineages. L1s contribute extensively to gene regulation, but their molecular history is difficult to trace, because most are present only as truncated and highly mutated fossils. Consequently, L1 entries in current databases of repeat sequences are composed mainly of short diagnostic subsequences, rather than full functional progenitor sequences for each subfamily. Here, we have coupled 2 levels of sequence reconstruction (at the level of whole genomes and L1 subfamilies) to reconstruct progenitor sequences for all human L1 subfamilies that are more functionally and phylogenetically plausible than existing models. Most of the reconstructed sequences are at or near the canonical length of L1s and encode uninterrupted ORFs with expected protein domains. We also show that the presence or absence of binding sites for KRAB-C2H2 Zinc Finger Proteins, even in ancient-reconstructed progenitor L1s, mirrors binding observed in human ChIP-exo experiments, thus extending the arms race and domestication model. RepeatMasker searches of the modern human genome suggest that the new models may be able to assign subfamily resolution identities to previously ambiguous L1 instances. The reconstructed L1 sequences will be useful for genome annotation and functional study of both L1 evolution and L1 contributions to host regulatory networks.
Phylogenetic Manifold Regularization: A semi-supervised approach to predict transcription factor binding sites
Faizy Ahsan
Franccois Laviolette
The computational prediction of transcription factor binding sites remains a challenging problems in bioinformatics, despite significant met… (voir plus)hodological developments from the field of machine learning. Such computational models are essential to help interpret the non-coding portion of human genomes, and to learn more about the regulatory mechanisms controlling gene expression. In parallel, massive genome sequencing efforts have produced assembled genomes for hundred of vertebrate species, but this data is underused. We present PhyloReg, a new semi-supervised learning approach that can be used for a wide variety of sequence-to-function prediction problems, and that takes advantage of hundreds of millions of years of evolution to regularize predictors and improve accuracy. We demonstrate that PhyloReg can be used to better train a previously proposed deep learning model of transcription factor binding. Simulation studies further help delineate the benefits of the a pproach. G ains in prediction accuracy are obtained over a broad set of transcription factors and cell types.
Algorithms in Bioinformatics
P. Agarwal
Tatsuya Akutsu
Amir Amihood
Alberto Apostolico
C. Benham
Gary Gustaf Benson
Nadia El-Mabrouk
Olivier Gascuel
Raffaele Giancarlo
R. Guigó
Michael Hallet
D. Huson
G. Kucherov
Michelle R. Lacey
Jens Lagergren
Giuseppe Lancia
Gad M. Landau
Thierry. Lecroq
B. Moret … (voir 21 de plus)
S. Morishita
Elchanan Mossel
Vincent Moulton
Lior S. Pachter
Knut Reinert
I. Rigoutsos
David Sankoff
Sophie Schbath
Eran Segal
Charles Semple
J. Setubal
Roded Sharan
S. Skiena
Jens Stoye
Esko Ukkonen
Lisa Allen Vawter
Alfonso Valencia
Tandy J. Warnow
Lusheng Wang
Rita Casadio
Gene Myers