Portrait de Mario  Pasquato

Mario Pasquato

Alumni

Publications

A Data-driven Discovery of the Causal Connection between Galaxy and Black Hole Evolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Yu Luo
Changhyun Cho
Xi 熙 Kang 康
Andrea Maccio
Beyond Causal Discovery for Astronomy: Learning Meaningful Representations with Independent Component Analysis
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Andrea Maccio
Beyond Causal Discovery for Astronomy: Learning Meaningful Representations with Independent Component Analysis
Zehao Jin
Mario Pasquato
Benjamin L. Davis
A. Macciò
Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Yu Luo
Changhyun Cho
Xi 熙 Kang 康
Andrea Maccio
Correlation does not imply causation, but patterns of statistical association between variables can be exploited to infer a causal structure… (voir plus) (even with purely observational data) with the burgeoning field of causal discovery. As a purely observational science, astrophysics has much to gain by exploiting these new methods. The supermassive black hole (SMBH)–galaxy interaction has long been constrained by observed scaling relations, which is low-scatter correlations between variables such as SMBH mass and the central velocity dispersion of stars in a host galaxy's bulge. This study, using advanced causal discovery techniques and an up-to-date data set, reveals a causal link between galaxy properties and dynamically measured SMBH masses. We apply a score-based Bayesian framework to compute the exact conditional probabilities of every causal structure that could possibly describe our galaxy sample. With the exact posterior distribution, we determine the most likely causal structures and notice a probable causal reversal when separating galaxies by morphology. In elliptical galaxies, bulge properties (built from major mergers) tend to influence SMBH growth, while, in spiral galaxies, SMBHs are seen to affect host galaxy properties, potentially through feedback in gas-rich environments. For spiral galaxies, SMBHs progressively quench star formation, whereas, in elliptical galaxies, quenching is complete, and the causal connection has reversed. Our findings support theoretical models of hierarchical assembly of galaxies and active galactic nuclei feedback regulating galaxy evolution. Our study suggests the potentiality for further exploration of causal links in astrophysical and cosmological scaling relations, as well as any other observational science.
Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Yu Luo
Changhyun Cho
Xi 熙 Kang 康
Andrea Maccio
Correlation does not imply causation, but patterns of statistical association between variables can be exploited to infer a causal structure… (voir plus) (even with purely observational data) with the burgeoning field of causal discovery. As a purely observational science, astrophysics has much to gain by exploiting these new methods. The supermassive black hole (SMBH)–galaxy interaction has long been constrained by observed scaling relations, which is low-scatter correlations between variables such as SMBH mass and the central velocity dispersion of stars in a host galaxy's bulge. This study, using advanced causal discovery techniques and an up-to-date data set, reveals a causal link between galaxy properties and dynamically measured SMBH masses. We apply a score-based Bayesian framework to compute the exact conditional probabilities of every causal structure that could possibly describe our galaxy sample. With the exact posterior distribution, we determine the most likely causal structures and notice a probable causal reversal when separating galaxies by morphology. In elliptical galaxies, bulge properties (built from major mergers) tend to influence SMBH growth, while, in spiral galaxies, SMBHs are seen to affect host galaxy properties, potentially through feedback in gas-rich environments. For spiral galaxies, SMBHs progressively quench star formation, whereas, in elliptical galaxies, quenching is complete, and the causal connection has reversed. Our findings support theoretical models of hierarchical assembly of galaxies and active galactic nuclei feedback regulating galaxy evolution. Our study suggests the potentiality for further exploration of causal links in astrophysical and cosmological scaling relations, as well as any other observational science.
Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Yu Luo
Changhyun Cho
Xi Kang
Andrea Maccio
Correlation does not imply causation, but patterns of statistical association between variables can be exploited to infer a causal structure… (voir plus) (even with purely observational data) with the burgeoning field of causal discovery. As a purely observational science, astrophysics has much to gain by exploiting these new methods. The supermassive black hole (SMBH)--galaxy interaction has long been constrained by observed scaling relations, that is low-scatter correlations between variables such as SMBH mass and the central velocity dispersion of stars in a host galaxy's bulge. This study, using advanced causal discovery techniques and an up-to-date dataset, reveals a causal link between galaxy properties and dynamically-measured SMBH masses. We apply a score-based Bayesian framework to compute the exact conditional probabilities of every causal structure that could possibly describe our galaxy sample. With the exact posterior distribution, we determine the most likely causal structures and notice a probable causal reversal when separating galaxies by morphology. In elliptical galaxies, bulge properties (built from major mergers) tend to influence SMBH growth, while in spiral galaxies, SMBHs are seen to affect host galaxy properties, potentially through feedback in gas-rich environments. For spiral galaxies, SMBHs progressively quench star formation, whereas in elliptical galaxies, quenching is complete, and the causal connection has reversed. Our findings support theoretical models of hierarchical assembly of galaxies and active galactic nuclei feedback regulating galaxy evolution. Our study suggests the potentiality for further exploration of causal links in astrophysical and cosmological scaling relations, as well as any other observational science.
Variable Star Light Curves in Koopman Space
Nicolas Mekhaël
Mario Pasquato
Gaia Carenini
V. Braga
Piero Trevisan
Giuseppe Bono
We present the first application of data-driven techniques for dynamical system analysis based on Koopman theory to variable stars. We focus… (voir plus) on light curves of RRLyrae type variables, in the Galactic globular cluster
Variable Star Light Curves in Koopman Space
Nicolas Mekhaël
Mario Pasquato
Gaia Carenini
Vittorio F. Braga
Piero Trevisan
Giuseppe Bono
Interpretable Machine Learning for Finding Intermediate-mass Black Holes
Mario Pasquato
Piero Trevisan
Abbas Askar
Gaia Carenini
Michela Mapelli
Active learning meets fractal decision boundaries: a cautionary tale from the Sitnikov three-body problem
Mario Pasquato
Alessandro A. Trani
Chaotic systems such as the gravitational N-body problem are ubiquitous in astronomy. Machine learning (ML) is increasingly deployed to pred… (voir plus)ict the evolution of such systems, e.g. with the goal of speeding up simulations. Strategies such as active Learning (AL) are a natural choice to optimize ML training. Here we showcase an AL failure when predicting the stability of the Sitnikov three-body problem, the simplest case of N-body problem displaying chaotic behavior. We link this failure to the fractal nature of our classification problem's decision boundary. This is a potential pitfall in optimizing large sets of N-body simulations via AL in the context of star cluster physics, galactic dynamics, or cosmology.
The search for the lost attractor
Mario Pasquato
Syphax Haddad
Pierfrancesco Di Cintio
No'e Dia
Mircea Petrache
Ugo Niccolo Di Carlo
Alessandro A. Trani