Portrait de Khimya Khetarpal

Khimya Khetarpal

Membre affilié
Chercheuse scientifique, Google DeepMind
Sujets de recherche
Apprentissage de représentations
Apprentissage en ligne
Apprentissage par renforcement
Théorie de l'apprentissage automatique

Biographie

Khimya Khetarpal est chercheuse chez Google Deepmind. Elle a obtenu son doctorat en informatique au Reasoning and Learning Lab de l'Université McGill et à Mila, csupervisée par Doina Precup. Elle s'intéresse de manière générale à l'intelligence artificielle et à l'apprentissage par renforcement. Ses recherches actuelles portent sur la manière dont les agents RL apprennent à représenter efficacement les connaissances du monde, à planifier avec elles et à s'adapter aux changements au fil du temps. Les travaux de Khimya ont été publiés dans les principales revues et conférences sur l'intelligence artificielle, notamment NeurIPS, ICML, AAAI, AISTATS, ICLR, The Knowledge Engineering Review, ACM, JAIR et TMLR. Ses travaux ont également été présentés dans la MIT Technology Review. Elle a été reconnue comme examinatrice experte de TMLR en 2023, l'une des étoiles montantes d'EECS 2020, finaliste du concours Three Minute Thesis (3MT) d'AAAI 2019, sélectionnée pour le consortium doctoral d'AAAI 2019, et a reçu le prix du meilleur article (3e prix) pour un atelier ICML 2018 sur l'apprentissage tout au long de la vie. Tout au long de sa carrière, elle s'est efforcée d'être une mentore active par le biais d'initiatives telles que la cofondation de l'initiative de conseil par les pairs Mila, l'enseignement et l'assistance au AI4Good Lab, le bénévolat à Skype A Scientist et le mentorat à FIRST Robotics.

Ses recherches visent à (1) comprendre le comportement intelligent qui fait le lien entre l'action et la perception en s'appuyant sur les fondements théoriques de l'apprentissage par renforcement, et (2) construire des agents d'intelligence artificielle pour représenter efficacement la connaissance du monde, planifier avec elle et s'adapter aux changements au fil du temps grâce à l'apprentissage et à l'interaction.

Elle aborde actuellement ces questions dans les directions de recherche suivantes :

- Attention sélective pour une adaptation et une robustesse rapides

- Apprentissage des abstractions et des affordances

- Découverte et apprentissage par renforcement continu

Étudiants actuels

Doctorat - UdeM
Superviseur⋅e principal⋅e :

Publications

Attend Before you Act: Leveraging human visual attention for continual learning
When humans perform a task, such as playing a game, they selectively pay attention to certain parts of the visual input, gathering relevant … (voir plus)information and sequentially combining it to build a representation from the sensory data. In this work, we explore leveraging where humans look in an image as an implicit indication of what is salient for decision making. We build on top of the UNREAL architecture in DeepMind Lab's 3D navigation maze environment. We train the agent both with original images and foveated images, which were generated by overlaying the original images with saliency maps generated using a real-time spectral residual technique. We investigate the effectiveness of this approach in transfer learning by measuring performance in the context of noise in the environment.
RE-EVALUATE: Reproducibility in Evaluating Reinforcement Learning Algorithms
Zafarali Ahmed
Andre Cianflone
Riashat Islam
Reinforcement learning (RL) has recently achieved tremendous success in solving complex tasks. Careful considerations are made towards repro… (voir plus)ducible research in machine learning. Reproducibility in RL often becomes more difficult, due to the lack of standard evaluation method and detailed methodology for algorithms and comparisons with existing work. In this work, we highlight key differences in evaluation in RL compared to supervised learning, and discuss specific issues that are often non-intuitive for newcomers. We study the importance of reproducibility in evaluation in RL, and propose an evaluation pipeline that can be decoupled from the algorithm code. We hope such an evaluation pipeline can be standardized, as a step towards robust and reproducible research in RL.