Hackathon | Créer une IA plus sécuritaire pour la santé mentale des jeunes
Du 16 au 23 mars 2026, rejoignez une communauté dynamique dédiée à exploiter la puissance de l'IA pour créer des solutions favorisant le bien-être mental des jeunes.
Apprenez à tirer parti de l’IA générative pour soutenir et améliorer votre productivité au travail. La prochaine cohorte se déroulera en ligne les 24 et 26 février 2026, en anglais.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Lecteur Multimédia
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
In recent years, many industries have utilized machine learning models (ML) in their systems. Ideally, machine learning models should be tra… (voir plus)ined on and applied to data from the same distributions. However, the data evolves over time in many application areas, leading to data and concept drift, which in turn causes the performance of the ML models to degrade over time. Therefore, maintaining up to date ML models plays a critical role in the MLOps pipeline. Existing ML model maintenance approaches are often computationally resource intensive, costly, time consuming, and model dependent. Thus, we propose an improved MLOps pipeline, a new model maintenance approach and a Similarity Based Model Reuse (SimReuse) tool to address the challenges of ML model maintenance. We identify seasonal and recurrent distribution patterns in time series datasets throughout a preliminary study. Recurrent distribution patterns enable us to reuse previously trained models for similar distributions in the future, thus avoiding frequent retraining. Then, we integrated the model reuse approach into the MLOps pipeline and proposed our improved MLOps pipeline. Furthermore, we develop SimReuse, a tool to implement the new components of our MLOps pipeline to store models and reuse them for inference of data segments with similar data distributions in the future. Our evaluation results on four time series datasets demonstrate that our model reuse approach can maintain the performance of models while significantly reducing maintenance time and costs. Our model reuse approach achieves ML performance comparable to the best baseline, while being 15 times more efficient in terms of computation time and costs. Therefore, industries and practitioners can benefit from our approach and use our tool to maintain the performance of their ML models in the deployment phase to reduce their maintenance costs.
In recent years, many industries have utilized machine learning models (ML) in their systems. Ideally, machine learning models should be tra… (voir plus)ined on and applied to data from the same distributions. However, the data evolves over time in many application areas, leading to data and concept drift, which in turn causes the performance of the ML models to degrade over time. Therefore, maintaining up to date ML models plays a critical role in the MLOps pipeline. Existing ML model maintenance approaches are often computationally resource intensive, costly, time consuming, and model dependent. Thus, we propose an improved MLOps pipeline, a new model maintenance approach and a Similarity Based Model Reuse (SimReuse) tool to address the challenges of ML model maintenance. We identify seasonal and recurrent distribution patterns in time series datasets throughout a preliminary study. Recurrent distribution patterns enable us to reuse previously trained models for similar distributions in the future, thus avoiding frequent retraining. Then, we integrated the model reuse approach into the MLOps pipeline and proposed our improved MLOps pipeline. Furthermore, we develop SimReuse, a tool to implement the new components of our MLOps pipeline to store models and reuse them for inference of data segments with similar data distributions in the future. Our evaluation results on four time series datasets demonstrate that our model reuse approach can maintain the performance of models while significantly reducing maintenance time and costs. Our model reuse approach achieves ML performance comparable to the best baseline, while being 15 times more efficient in terms of computation time and costs. Therefore, industries and practitioners can benefit from our approach and use our tool to maintain the performance of their ML models in the deployment phase to reduce their maintenance costs.
In recent years, many industries have utilized machine learning models (ML) in their systems. Ideally, machine learning models should be tra… (voir plus)ined on and applied to data from the same distributions. However, the data evolves over time in many application areas, leading to data and concept drift, which in turn causes the performance of the ML models to degrade over time. Therefore, maintaining up to date ML models plays a critical role in the MLOps pipeline. Existing ML model maintenance approaches are often computationally resource intensive, costly, time consuming, and model dependent. Thus, we propose an improved MLOps pipeline, a new model maintenance approach and a Similarity Based Model Reuse (SimReuse) tool to address the challenges of ML model maintenance. We identify seasonal and recurrent distribution patterns in time series datasets throughout a preliminary study. Recurrent distribution patterns enable us to reuse previously trained models for similar distributions in the future, thus avoiding frequent retraining. Then, we integrated the model reuse approach into the MLOps pipeline and proposed our improved MLOps pipeline. Furthermore, we develop SimReuse, a tool to implement the new components of our MLOps pipeline to store models and reuse them for inference of data segments with similar data distributions in the future. Our evaluation results on four time series datasets demonstrate that our model reuse approach can maintain the performance of models while significantly reducing maintenance time and costs. Our model reuse approach achieves ML performance comparable to the best baseline, while being 15 times more efficient in terms of computation time and costs. Therefore, industries and practitioners can benefit from our approach and use our tool to maintain the performance of their ML models in the deployment phase to reduce their maintenance costs.