A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
In recent years, many industries have utilized machine learning models (ML) in their systems. Ideally, machine learning models should be tra… (see more)ined on and applied to data from the same distributions. However, the data evolves over time in many application areas, leading to data and concept drift, which in turn causes the performance of the ML models to degrade over time. Therefore, maintaining up to date ML models plays a critical role in the MLOps pipeline. Existing ML model maintenance approaches are often computationally resource intensive, costly, time consuming, and model dependent. Thus, we propose an improved MLOps pipeline, a new model maintenance approach and a Similarity Based Model Reuse (SimReuse) tool to address the challenges of ML model maintenance. We identify seasonal and recurrent distribution patterns in time series datasets throughout a preliminary study. Recurrent distribution patterns enable us to reuse previously trained models for similar distributions in the future, thus avoiding frequent retraining. Then, we integrated the model reuse approach into the MLOps pipeline and proposed our improved MLOps pipeline. Furthermore, we develop SimReuse, a tool to implement the new components of our MLOps pipeline to store models and reuse them for inference of data segments with similar data distributions in the future. Our evaluation results on four time series datasets demonstrate that our model reuse approach can maintain the performance of models while significantly reducing maintenance time and costs. Our model reuse approach achieves ML performance comparable to the best baseline, while being 15 times more efficient in terms of computation time and costs. Therefore, industries and practitioners can benefit from our approach and use our tool to maintain the performance of their ML models in the deployment phase to reduce their maintenance costs.
In recent years, many industries have utilized machine learning models (ML) in their systems. Ideally, machine learning models should be tra… (see more)ined on and applied to data from the same distributions. However, the data evolves over time in many application areas, leading to data and concept drift, which in turn causes the performance of the ML models to degrade over time. Therefore, maintaining up to date ML models plays a critical role in the MLOps pipeline. Existing ML model maintenance approaches are often computationally resource intensive, costly, time consuming, and model dependent. Thus, we propose an improved MLOps pipeline, a new model maintenance approach and a Similarity Based Model Reuse (SimReuse) tool to address the challenges of ML model maintenance. We identify seasonal and recurrent distribution patterns in time series datasets throughout a preliminary study. Recurrent distribution patterns enable us to reuse previously trained models for similar distributions in the future, thus avoiding frequent retraining. Then, we integrated the model reuse approach into the MLOps pipeline and proposed our improved MLOps pipeline. Furthermore, we develop SimReuse, a tool to implement the new components of our MLOps pipeline to store models and reuse them for inference of data segments with similar data distributions in the future. Our evaluation results on four time series datasets demonstrate that our model reuse approach can maintain the performance of models while significantly reducing maintenance time and costs. Our model reuse approach achieves ML performance comparable to the best baseline, while being 15 times more efficient in terms of computation time and costs. Therefore, industries and practitioners can benefit from our approach and use our tool to maintain the performance of their ML models in the deployment phase to reduce their maintenance costs.
In recent years, many industries have utilized machine learning models (ML) in their systems. Ideally, machine learning models should be tra… (see more)ined on and applied to data from the same distributions. However, the data evolves over time in many application areas, leading to data and concept drift, which in turn causes the performance of the ML models to degrade over time. Therefore, maintaining up to date ML models plays a critical role in the MLOps pipeline. Existing ML model maintenance approaches are often computationally resource intensive, costly, time consuming, and model dependent. Thus, we propose an improved MLOps pipeline, a new model maintenance approach and a Similarity Based Model Reuse (SimReuse) tool to address the challenges of ML model maintenance. We identify seasonal and recurrent distribution patterns in time series datasets throughout a preliminary study. Recurrent distribution patterns enable us to reuse previously trained models for similar distributions in the future, thus avoiding frequent retraining. Then, we integrated the model reuse approach into the MLOps pipeline and proposed our improved MLOps pipeline. Furthermore, we develop SimReuse, a tool to implement the new components of our MLOps pipeline to store models and reuse them for inference of data segments with similar data distributions in the future. Our evaluation results on four time series datasets demonstrate that our model reuse approach can maintain the performance of models while significantly reducing maintenance time and costs. Our model reuse approach achieves ML performance comparable to the best baseline, while being 15 times more efficient in terms of computation time and costs. Therefore, industries and practitioners can benefit from our approach and use our tool to maintain the performance of their ML models in the deployment phase to reduce their maintenance costs.