Portrait de Erick Delage

Erick Delage

Membre académique associé
Professeur titulaire, HEC Montréal, Département de sciences de la décision
Sujets de recherche
Apprentissage par renforcement
Optimisation

Biographie

Erick Delage est professeur au Département de sciences de la décision à HEC Montréal, titulaire de la Chaire de recherche du Canada en prise de décision sous incertitude, et membre du Collège de nouveaux chercheurs et créateurs en art et en science de la Société royale du Canada. Ses domaines de recherche englobent l'optimisation robuste et stochastique, l'analyse de décision, l'apprentissage automatique, l'apprentissage par renforcement et la gestion des risques avec des applications en optimisation de portefeuille, en gestion des stocks, et dans les problèmes liés à l'énergie et aux transports.

Étudiants actuels

Postdoctorat - HEC
Doctorat - HEC
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant
Doctorat - HEC
Visiteur de recherche indépendant
Doctorat - HEC
Doctorat - HEC

Publications

Technical Note—Risk-Averse Regret Minimization in Multistage Stochastic Programs
Mehran Poursoltani
Angelos Georghiou
On Dynamic Program Decompositions of Static Risk Measures
Jia Lin Hau
Mohammad Ghavamzadeh
Marek Petrik
Optimizing static risk-averse objectives in Markov decision processes is challenging because they do not readily admit dynamic programming d… (voir plus)ecompositions. Prior work has proposed to use a dynamic decomposition of risk measures that help to formulate dynamic programs on an augmented state space. This paper shows that several existing decompositions are inherently inexact, contradicting several claims in the literature. In particular, we give examples that show that popular decompositions for CVaR and EVaR risk measures are strict overestimates of the true risk values. However, an exact decomposition is possible for VaR, and we give a simple proof that illustrates the fundamental difference between VaR and CVaR dynamic programming properties.
Data-Driven Optimization with Distributionally Robust Second Order Stochastic Dominance Constraints
Chun Peng
This paper presents the first comprehensive study of a data-driven formulation of the distributionally robust second order stochastic domina… (voir plus)nce constrained problem (DRSSDCP) that hinges on using a type-1 Wasserstein ambiguity set. It is, furthermore, for the first time shown to be axiomatically motivated in an environment with distribution ambiguity. We formulate the DRSSDCP as a multistage robust optimization problem and further propose a tractable conservative approximation that exploits finite adaptability and a scenario-based lower bounding problem. We then propose the first exact optimization algorithm for this DRSSDCP. We illustrate how the data-driven DRSSDCP can be applied in practice on resource-allocation problems with both synthetic and real data. Our empirical results show that, with a proper adjustment of the size of the Wasserstein ball, DRSSDCP can reach acceptable out-of-sample feasibility yet still generating strictly better performance than what is achieved by the reference strategy.