Portrait of Erick Delage

Erick Delage

Associate Academic Member
Full Professor, HEC Montréal, Department of Decision Sciences
Research Topics
Optimization
Reinforcement Learning

Biography

Erick Delage is a professor in the Department of Decision Sciences at HEC Montréal, the Canada Research Chair in Decision Making Under Uncertainty, and a member of the College of New Scholars, Artists and Scientists of the Royal Society of Canada.

Delage’s research interests span the areas of robust and stochastic optimization, decision analysis, machine learning, reinforcement learning and risk management. He focuses on the applications of these processes to portfolio optimization, inventory management, and energy and transportation problems.

Current Students

Postdoctorate - HEC Montréal
PhD - HEC Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher
PhD - HEC Montréal
Independent visiting researcher
PhD - HEC Montréal
PhD - HEC Montréal

Publications

Technical Note—Risk-Averse Regret Minimization in Multistage Stochastic Programs
Mehran Poursoltani
Angelos Georghiou
On Dynamic Program Decompositions of Static Risk Measures
Jia Lin Hau
Mohammad Ghavamzadeh
Marek Petrik
Optimizing static risk-averse objectives in Markov decision processes is challenging because they do not readily admit dynamic programming d… (see more)ecompositions. Prior work has proposed to use a dynamic decomposition of risk measures that help to formulate dynamic programs on an augmented state space. This paper shows that several existing decompositions are inherently inexact, contradicting several claims in the literature. In particular, we give examples that show that popular decompositions for CVaR and EVaR risk measures are strict overestimates of the true risk values. However, an exact decomposition is possible for VaR, and we give a simple proof that illustrates the fundamental difference between VaR and CVaR dynamic programming properties.
Data-Driven Optimization with Distributionally Robust Second Order Stochastic Dominance Constraints
Chun Peng
This paper presents the first comprehensive study of a data-driven formulation of the distributionally robust second order stochastic domina… (see more)nce constrained problem (DRSSDCP) that hinges on using a type-1 Wasserstein ambiguity set. It is, furthermore, for the first time shown to be axiomatically motivated in an environment with distribution ambiguity. We formulate the DRSSDCP as a multistage robust optimization problem and further propose a tractable conservative approximation that exploits finite adaptability and a scenario-based lower bounding problem. We then propose the first exact optimization algorithm for this DRSSDCP. We illustrate how the data-driven DRSSDCP can be applied in practice on resource-allocation problems with both synthetic and real data. Our empirical results show that, with a proper adjustment of the size of the Wasserstein ball, DRSSDCP can reach acceptable out-of-sample feasibility yet still generating strictly better performance than what is achieved by the reference strategy.