Portrait de Dinghuai Zhang

Dinghuai Zhang

Doctorat - UdeM
Superviseur⋅e principal⋅e
Co-supervisor
Sujets de recherche
Modèles génératifs
Modèles probabilistes

Publications

GFlowNets and variational inference
This paper builds bridges between two families of probabilistic algorithms: (hierarchical) variational inference (VI), which is typically us… (voir plus)ed to model distributions over continuous spaces, and generative flow networks (GFlowNets), which have been used for distributions over discrete structures such as graphs. We demonstrate that, in certain cases, VI algorithms are equivalent to special cases of GFlowNets in the sense of equality of expected gradients of their learning objectives. We then point out the differences between the two families and show how these differences emerge experimentally. Notably, GFlowNets, which borrow ideas from reinforcement learning, are more amenable than VI to off-policy training without the cost of high gradient variance induced by importance sampling. We argue that this property of GFlowNets can provide advantages for capturing diversity in multimodal target distributions.
Latent State Marginalization as a Low-cost Approach for Improving Exploration
Qinqing Zheng
Amy Zhang
Ricky T. Q. Chen
P REDICTIVE I NFERENCE WITH F EATURE C ONFORMAL P REDICTION
Jiaye Teng
Chuan Wen
Yan Gao
Yang Yuan
A theory of continuous generative flow networks
Generative flow networks (GFlowNets) are amortized variational inference algorithms that are trained to sample from unnormalized target dist… (voir plus)ributions over compositional objects. A key limitation of GFlowNets until this time has been that they are restricted to discrete spaces. We present a theory for generalized GFlowNets, which encompasses both existing discrete GFlowNets and ones with continuous or hybrid state spaces, and perform experiments with two goals in mind. First, we illustrate critical points of the theory and the importance of various assumptions. Second, we empirically demonstrate how observations about discrete GFlowNets transfer to the continuous case and show strong results compared to non-GFlowNet baselines on several previously studied tasks. This work greatly widens the perspectives for the application of GFlowNets in probabilistic inference and various modeling settings.
GFlowOut: Dropout with Generative Flow Networks
Dianbo Liu
Moksh J. Jain
Bonaventure F. P. Dossou
Qianli Shen
Anirudh Goyal
Xu Ji
Kenji Kawaguchi
GFlowOut: Dropout with Generative Flow Networks
Dianbo Liu
Moksh J. Jain
Bonaventure F. P. Dossou
Qianli Shen
Anirudh Goyal
Xu Ji
Kenji Kawaguchi
Stochastic Generative Flow Networks
Ling Pan
Moksh J. Jain
Longbo Huang
Stochastic Generative Flow Networks
Ling Pan
Moksh J. Jain
Longbo Huang
Generative Flow Networks (or GFlowNets for short) are a family of probabilistic agents that learn to sample complex combinatorial structures… (voir plus) through the lens of ``inference as control''. They have shown great potential in generating high-quality and diverse candidates from a given energy landscape. However, existing GFlowNets can be applied only to deterministic environments, and fail in more general tasks with stochastic dynamics, which can limit their applicability. To overcome this challenge, this paper introduces Stochastic GFlowNets, a new algorithm that extends GFlowNets to stochastic environments. By decomposing state transitions into two steps, Stochastic GFlowNets isolate environmental stochasticity and learn a dynamics model to capture it. Extensive experimental results demonstrate that Stochastic GFlowNets offer significant advantages over standard GFlowNets as well as MCMC- and RL-based approaches, on a variety of standard benchmarks with stochastic dynamics.
A theory of continuous generative flow networks
Generative flow networks (GFlowNets) are amortized variational inference algorithms that are trained to sample from unnormalized target dist… (voir plus)ributions over compositional objects. A key limitation of GFlowNets until this time has been that they are restricted to discrete spaces. We present a theory for generalized GFlowNets, which encompasses both existing discrete GFlowNets and ones with continuous or hybrid state spaces, and perform experiments with two goals in mind. First, we illustrate critical points of the theory and the importance of various assumptions. Second, we empirically demonstrate how observations about discrete GFlowNets transfer to the continuous case and show strong results compared to non-GFlowNet baselines on several previously studied tasks. This work greatly widens the perspectives for the application of GFlowNets in probabilistic inference and various modeling settings.
A theory of continuous generative flow networks
Latent State Marginalization as a Low-cost Approach for Improving Exploration
Qinqing Zheng
Amy Zhang
Ricky T. Q. Chen
While the maximum entropy (MaxEnt) reinforcement learning (RL) framework -- often touted for its exploration and robustness capabilities -- … (voir plus)is usually motivated from a probabilistic perspective, the use of deep probabilistic models has not gained much traction in practice due to their inherent complexity. In this work, we propose the adoption of latent variable policies within the MaxEnt framework, which we show can provably approximate any policy distribution, and additionally, naturally emerges under the use of world models with a latent belief state. We discuss why latent variable policies are difficult to train, how naive approaches can fail, then subsequently introduce a series of improvements centered around low-cost marginalization of the latent state, allowing us to make full use of the latent state at minimal additional cost. We instantiate our method under the actor-critic framework, marginalizing both the actor and critic. The resulting algorithm, referred to as Stochastic Marginal Actor-Critic (SMAC), is simple yet effective. We experimentally validate our method on continuous control tasks, showing that effective marginalization can lead to better exploration and more robust training. Our implementation is open sourced at https://github.com/zdhNarsil/Stochastic-Marginal-Actor-Critic.
Unifying Generative Models with GFlowNets
There are many frameworks for deep generative modeling, each often presented with their own specific training algorithms and inference metho… (voir plus)ds. Here, we demonstrate the connections between existing deep generative models and the recently introduced GFlowNet framework, a probabilistic inference machine which treats sampling as a decision-making process. This analysis sheds light on their overlapping traits and provides a unifying viewpoint through the lens of learning with Markovian trajectories. Our framework provides a means for unifying training and inference algorithms, and provides a route to shine a unifying light over many generative models. Beyond this, we provide a practical and experimentally verified recipe for improving generative modeling with insights from the GFlowNet perspective.