Portrait de Brennan Nichyporuk n'est pas disponible

Brennan Nichyporuk

Scientifique de recherche, Innovation, développement et technologies

Publications

DeCoDEx: Confounder Detector Guidance for Improved Diffusion-based Counterfactual Explanations
Nima Fathi
Amar Kumar
Brennan Nichyporuk
Mohammad Havaei
Deep learning classifiers are prone to latching onto dominant confounders present in a dataset rather than on the causal markers associated … (voir plus)with the target class, leading to poor generalization and biased predictions. Although explainability via counterfactual image generation has been successful at exposing the problem, bias mitigation strategies that permit accurate explainability in the presence of dominant and diverse artifacts remain unsolved. In this work, we propose the DeCoDEx framework and show how an external, pre-trained binary artifact detector can be leveraged during inference to guide a diffusion-based counterfactual image generator towards accurate explainability. Experiments on the CheXpert dataset, using both synthetic artifacts and real visual artifacts (support devices), show that the proposed method successfully synthesizes the counterfactual images that change the causal pathology markers associated with Pleural Effusion while preserving or ignoring the visual artifacts. Augmentation of ERM and Group-DRO classifiers with the DeCoDEx generated images substantially improves the results across underrepresented groups that are out of distribution for each class. The code is made publicly available at https://github.com/NimaFathi/DeCoDEx.
HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling
Daniel Duenias
Brennan Nichyporuk
Tammy Riklin-Raviv
The integration of diverse clinical modalities such as medical imaging and the tabular data obtained by the patients' Electronic Health Reco… (voir plus)rds (EHRs) is a crucial aspect of modern healthcare. The integrative analysis of multiple sources can provide a comprehensive understanding of a patient's condition and can enhance diagnoses and treatment decisions. Deep Neural Networks (DNNs) consistently showcase outstanding performance in a wide range of multimodal tasks in the medical domain. However, the complex endeavor of effectively merging medical imaging with clinical, demographic and genetic information represented as numerical tabular data remains a highly active and ongoing research pursuit. We present a novel framework based on hypernetworks to fuse clinical imaging and tabular data by conditioning the image processing on the EHR's values and measurements. This approach aims to leverage the complementary information present in these modalities to enhance the accuracy of various medical applications. We demonstrate the strength and the generality of our method on two different brain Magnetic Resonance Imaging (MRI) analysis tasks, namely, brain age prediction conditioned by subject's sex, and multiclass Alzheimer's Disease (AD) classification conditioned by tabular data. We show that our framework outperforms both single-modality models and state-of-the-art MRI-tabular data fusion methods. The code, enclosed to this manuscript will be made publicly available.
DeCoDEx: Confounder Detector Guidance for Improved Diffusion-based Counterfactual Explanations
Nima Fathi
Amar Kumar
Brennan Nichyporuk
Mohammad Havaei
Deep learning classifiers are prone to latching onto dominant confounders present in a dataset rather than on the causal markers associated … (voir plus)with the target class, leading to poor generalization and biased predictions. Although explainability via counterfactual image generation has been successful at exposing the problem, bias mitigation strategies that permit accurate explainability in the presence of dominant and diverse artifacts remain unsolved. In this work, we propose the DeCoDEx framework and show how an external, pre-trained binary artifact detector can be leveraged during inference to guide a diffusion-based counterfactual image generator towards accurate explainability. Experiments on the CheXpert dataset, using both synthetic artifacts and real visual artifacts (support devices), show that the proposed method successfully synthesizes the counterfactual images that change the causal pathology markers associated with Pleural Effusion while preserving or ignoring the visual artifacts. Augmentation of ERM and Group-DRO classifiers with the DeCoDEx generated images substantially improves the results across underrepresented groups that are out of distribution for each class. The code is made publicly available at https://github.com/NimaFathi/DeCoDEx.
Metrics reloaded: Pitfalls and recommendations for image analysis validation
Lena Maier-Hein
Annika Reinke
Evangelia Christodoulou
Ben Glocker
PATRICK GODAU
Fabian Isensee
Jens Kleesiek
Michal Kozubek
Mauricio Reyes
MICHAEL A. RIEGLER
Manuel Wiesenfarth
Michael Baumgartner
Matthias Eisenmann
DOREEN HECKMANN-NÖTZEL
A. EMRE KAVUR
TIM RÄDSCH
Minu Dietlinde Tizabi
LAURA ACION
Michela Antonelli
Spyridon Bakas
Peter Bankhead
Allison Benis
M. Jorge Cardoso
Veronika Cheplygina
BETH A. CIMINI
Gary S. Collins
Keyvan Farahani
Bram van Ginneken
Daniel A. Hashimoto
Michael M. Hoffman
Merel Huisman
Pierre Jannin
CHARLES E. KAHN
ALEXANDROS KARARGYRIS
Alan Karthikesalingam
H. Kenngott
Annette Kopp-Schneider
Anna Kreshuk
Tahsin Kurc
Bennett Landman
GEERT LITJENS
Amin Madani
Klaus Maier-Hein
Anne L. Martel
Peter Mattson
ERIK MEIJERING
Bjoern Menze
David Moher
KAREL G.M. MOONS
Henning Müller
Felix Nickel
Brennan Nichyporuk
Jens Petersen
NASIR RAJPOOT
Nicola Rieke
Julio Saez-Rodriguez
Clarisa S'anchez Guti'errez
SHRAVYA SHETTY
M. Smeden
Carole H. Sudre
Ronald M. Summers
Abdel Aziz Taha
Sotirios A. Tsaftaris
B. Calster
Gael Varoquaux
PAUL F. JÄGER
Understanding metric-related pitfalls in image analysis validation
Annika Reinke
Minu Dietlinde Tizabi
Michael Baumgartner
Matthias Eisenmann
DOREEN HECKMANN-NÖTZEL
A. EMRE KAVUR
TIM RÄDSCH
Carole H. Sudre
LAURA ACION
Michela Antonelli
Spyridon Bakas
Allison Benis
Arriel Benis
Matthew Blaschko
FLORIAN BUETTNER
Florian Buttner
M. Jorge Cardoso
Veronika Cheplygina
JIANXU CHEN … (voir 62 de plus)
Evangelia Christodoulou
BETH A. CIMINI
Gary S. Collins
Keyvan Farahani
LUCIANA FERRER
Adrian Galdran
Bram van Ginneken
Ben Glocker
PATRICK GODAU
Robert Cary Haase
Daniel A. Hashimoto
Michael M. Hoffman
Merel Huisman
Fabian Isensee
Pierre Jannin
CHARLES E. KAHN
DAGMAR KAINMUELLER
BERNHARD KAINZ
ALEXANDROS KARARGYRIS
Alan Karthikesalingam
H. Kenngott
Jens Kleesiek
Florian Kofler
THIJS KOOI
Annette Kopp-Schneider
Michal Kozubek
Anna Kreshuk
Tahsin Kurc
Bennett A. Landman
GEERT LITJENS
Amin Madani
Klaus Maier-Hein
Anne L. Martel
Peter Mattson
ERIK MEIJERING
Bjoern Menze
KAREL G.M. MOONS
Henning Müller
Brennan Nichyporuk
Felix Nickel
Jens Petersen
SUSANNE M. RAFELSKI
NASIR RAJPOOT
Mauricio Reyes
MICHAEL A. RIEGLER
Nicola Rieke
Julio Saez-Rodriguez
Ben Van Calster
Clara I. Sánchez
SHRAVYA SHETTY
ZIV R. YANIV
M. Smeden
Ronald M. Summers
Abdel Aziz Taha
ALEKSEI TIULPIN
Sotirios A. Tsaftaris
B. Calster
Gael Varoquaux
Manuel Wiesenfarth
Ziv Rafael Yaniv
PAUL F. JÄGER
Lena Maier-Hein
Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles
Xing Shen
Hengguan Huang
Brennan Nichyporuk
Debiasing Counterfactuals in the Presence of Spurious Correlations
Amar Kumar
Nima Fathi
Raghav Mehta
Brennan Nichyporuk
Jean-Pierre R. Falet
Sotirios A. Tsaftaris
Deep learning models can perform well in complex medical imaging classification tasks, even when basing their conclusions on spurious correl… (voir plus)ations (i.e. confounders), should they be prevalent in the training dataset, rather than on the causal image markers of interest. This would thereby limit their ability to generalize across the population. Explainability based on counterfactual image generation can be used to expose the confounders but does not provide a strategy to mitigate the bias. In this work, we introduce the first end-to-end training framework that integrates both (i) popular debiasing classifiers (e.g. distributionally robust optimization (DRO)) to avoid latching onto the spurious correlations and (ii) counterfactual image generation to unveil generalizable imaging markers of relevance to the task. Additionally, we propose a novel metric, Spurious Correlation Latching Score (SCLS), to quantify the extent of the classifier reliance on the spurious correlation as exposed by the counterfactual images. Through comprehensive experiments on two public datasets (with the simulated and real visual artifacts), we demonstrate that the debiasing method: (i) learns generalizable markers across the population, and (ii) successfully ignores spurious correlations and focuses on the underlying disease pathology.
Personalized Prediction of Future Lesion Activity and Treatment Effect in Multiple Sclerosis from Baseline MRI
Joshua D. Durso-Finley
Jean-Pierre R. Falet
Brennan Nichyporuk
Douglas Arnold
Precision medicine for chronic diseases such as multiple sclerosis (MS) involves choosing a treatment which best balances efficacy and side … (voir plus)effects/preferences for individual patients. Making this choice as early as possible is important, as delays in finding an effective therapy can lead to irreversible disability accrual. To this end, we present the first deep neural network model for individualized treatment decisions from baseline magnetic resonance imaging (MRI) (with clinical information if available) for MS patients which (a) predicts future new and enlarging T2 weighted (NE-T2) lesion counts on follow-up MRI on multiple treatments and (b) estimates the conditional average treatment effect (CATE), as defined by the predicted future suppression of NE-T2 lesions, between different treatment options relative to placebo. Our model is validated on a proprietary federated dataset of 1817 multi-sequence MRIs acquired from MS patients during four multi-centre randomized clinical trials. Our framework achieves high average precision in the binarized regression of future NE-T2 lesions on five different treatments, identifies heterogeneous treatment effects, and provides a personalized treatment recommendation that accounts for treatment-associated risk (side effects, patient preference, administration difficulties,...).
Clinically Plausible Pathology-Anatomy Disentanglement in Patient Brain MRI with Structured Variational Priors
Anjun Hu
Jean-Pierre R. Falet
Brennan Nichyporuk
Changjian Shui
Douglas Arnold
Sotirios A. Tsaftaris
We propose a hierarchically structured variational inference model for accurately disentangling observable evidence of disease (e.g. brain l… (voir plus)esions or atrophy) from subject-specific anatomy in brain MRIs. With flexible, partially autoregressive priors, our model (1) addresses the subtle and fine-grained dependencies that typically exist between anatomical and pathological generating factors of an MRI to ensure the clinical validity of generated samples; (2) preserves and disentangles finer pathological details pertaining to a patient's disease state. Additionally, we experiment with an alternative training configuration where we provide supervision to a subset of latent units. It is shown that (1) a partially supervised latent space achieves a higher degree of disentanglement between evidence of disease and subject-specific anatomy; (2) when the prior is formulated with an autoregressive structure, knowledge from the supervision can propagate to the unsupervised latent units, resulting in more informative latent representations capable of modelling anatomy-pathology interdependencies.
Rethinking Generalization: The Impact of Annotation Style on Medical Image Segmentation
Brennan Nichyporuk
Jillian L. Cardinell
Justin Szeto
Raghav Mehta
Jean-Pierre R. Falet
Douglas Arnold
Sotirios A. Tsaftaris
Generalization is an important attribute of machine learning models, particularly for those that are to be deployed in a medical context, wh… (voir plus)ere unreliable predictions can have real world consequences. While the failure of models to generalize across datasets is typically attributed to a mismatch in the data distributions, performance gaps are often a consequence of biases in the "ground-truth" label annotations. This is particularly important in the context of medical image segmentation of pathological structures (e.g. lesions), where the annotation process is much more subjective, and affected by a number underlying factors, including the annotation protocol, rater education/experience, and clinical aims, among others. In this paper, we show that modeling annotation biases, rather than ignoring them, poses a promising way of accounting for differences in annotation style across datasets. To this end, we propose a generalized conditioning framework to (1) learn and account for different annotation styles across multiple datasets using a single model, (2) identify similar annotation styles across different datasets in order to permit their effective aggregation, and (3) fine-tune a fully trained model to a new annotation style with just a few samples. Next, we present an image-conditioning approach to model annotation styles that correlate with specific image features, potentially enabling detection biases to be more easily identified.
Estimating individual treatment effect on disability progression in multiple sclerosis using deep learning
Jean-Pierre R. Falet
Joshua D. Durso-Finley
Brennan Nichyporuk
Julien Schroeter
Francesca Bovis
Maria-Pia Sormani
Douglas Arnold
Counterfactual Image Synthesis for Discovery of Personalized Predictive Image Markers
Amar Kumar
Anjun Hu
Brennan Nichyporuk
Jean-Pierre R. Falet
Douglas Arnold
Sotirios A. Tsaftaris