Rejoignez-nous le 19 novembre pour la troisième édition du concours de vulgarisation scientifique de Mila, où les étudiant·e·s présenteront leurs recherches complexes en trois minutes devant un jury.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Deep learning models operating in the image domain are vulnerable to small input perturbations. For years, robustness to such perturbations … (voir plus)was pursued by training models from scratch (i.e., with random initializations) using specialized loss ob- jectives. Recently, robust fine-tuning has emerged as a more efficient alternative: instead of training from scratch, pretrained models are adapted to maximize pre- dictive performance and robustness. To conduct robust fine-tuning, practitioners design an optimization strategy that includes the model update protocol (e.g., full or partial) and the specialized loss objective. Additional design choices include the architecture type and size, and the pretrained representation. These design choices affect robust generalization, which is the model’s ability to maintain performance when exposed to new and unseen perturbations at test time. Understanding how these design choices influence generalization remains an open question with signif- icant practical implications. In response, we present an empirical study spanning 6 datasets, 40 pretrained architectures, 2 specialized losses, and 3 adaptation proto- cols — yielding 1, 440 training configurations and 7, 200 robustness measurements across five perturbation types. To our knowledge, this is the most diverse and comprehensive benchmark of robust fine-tuning to date. While attention-based architectures and robust pretrained representations are increasingly popular, we find that convolutional neural networks pretrained in a supervised manner on large datasets often perform best. Our analysis both confirms and challenges prior design assumptions, highlighting promising research directions and offering practical guidance.
Deep learning models operating in the image domain are vulnerable to small input perturbations. For years, robustness to such perturbations … (voir plus)was pursued by training models from scratch (i.e., with random initializations) using specialized loss objectives. Recently, robust fine-tuning has emerged as a more efficient alternative: instead of training from scratch, pretrained models are adapted to maximize predictive performance and robustness. To conduct robust fine-tuning, practitioners design an optimization strategy that includes the model update protocol (e.g., full or partial) and the specialized loss objective. Additional design choices include the architecture type and size, and the pretrained representation. These design choices affect robust generalization, which is the model's ability to maintain performance when exposed to new and unseen perturbations at test time. Understanding how these design choices influence generalization remains an open question with significant practical implications. In response, we present an empirical study spanning 6 datasets, 40 pretrained architectures, 2 specialized losses, and 3 adaptation protocols, yielding 1,440 training configurations and 7,200 robustness measurements across five perturbation types. To our knowledge, this is the most diverse and comprehensive benchmark of robust fine-tuning to date. While attention-based architectures and robust pretrained representations are increasingly popular, we find that convolutional neural networks pretrained in a supervised manner on large datasets often perform best. Our analysis both confirms and challenges prior design assumptions, highlighting promising research directions and offering practical guidance.
Deep learning models operating in the image domain are vulnerable to small input perturbations. For years, robustness to such perturbations … (voir plus)was pursued by training models from scratch (i.e., with random initializations) using specialized loss objectives. Recently, robust fine-tuning has emerged as a more efficient alternative: instead of training from scratch, pretrained models are adapted to maximize predictive performance and robustness. To conduct robust fine-tuning, practitioners design an optimization strategy that includes the model update protocol (e.g., full or partial) and the specialized loss objective. Additional design choices include the architecture type and size, and the pretrained representation. These design choices affect robust generalization, which is the model's ability to maintain performance when exposed to new and unseen perturbations at test time. Understanding how these design choices influence generalization remains an open question with significant practical implications. In response, we present an empirical study spanning 6 datasets, 40 pretrained architectures, 2 specialized losses, and 3 adaptation protocols, yielding 1,440 training configurations and 7,200 robustness measurements across five perturbation types. To our knowledge, this is the most diverse and comprehensive benchmark of robust fine-tuning to date. While attention-based architectures and robust pretrained representations are increasingly popular, we find that convolutional neural networks pretrained in a supervised manner on large datasets often perform best. Our analysis both confirms and challenges prior design assumptions, highlighting promising research directions and offering practical guidance.