A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Richard Khoury
Affiliate Member
Associate Professor, Université Laval, Department of Computer science and software engineering
Association rule mining is one of the most studied research fields of data mining, with applications ranging from grocery basket problems to… (see more) explainable classification systems. Classical association rule mining algorithms have several limitations, especially with regards to their high execution times and number of rules produced. Over the past decade, neural network solutions have been used to solve various optimization problems, such as classification, regression or clustering. However there are still no efficient way association rules using neural networks. In this paper, we present an auto-encoder solution to mine association rule called ARM-AE. We compare our algorithm to FP-Growth and NSGAII on three categorical datasets, and show that our algorithm discovers high support and confidence rule set and has a better execution time than classical methods while preserving the quality of the rule set produced.