We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Position: Probabilistic Modelling is Sufficient for Causal Inference
A growing body of computational studies shows that simple machine learning agents converge to cooperative behaviors in social dilemmas, such… (see more) as collusive price-setting in oligopoly markets, raising questions about what drives this outcome. In this work, we provide theoretical foundations for this phenomenon in the context of self-play multi-agent Q-learners in the iterated prisoner’s dilemma. We characterize broad conditions under which such agents provably learn the cooperative Pavlov (win-stay, lose-shift) policy rather than the Pareto-dominated “always defect” policy. We validate our theoretical results through additional experiments, demonstrating their robustness across a broader class of deep learning algorithms.