Publications

Development of small, cost‐efficient scintillating fiber detectors for automated synthesis of positron emission tomography radiopharmaceuticals
Hailey Ahn
Liam Carroll
Robert Hopewell
I-Huang Tsai
Dean Jolly
Gassan Massarweh
Dynamic HumTrans: Humming Transcription Using CNNs and Dynamic Programming
Shubham Gupta
Isaac Neri Gomez-Sarmiento
Faez Amjed Mezdari
Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data
Jiaming Zhou
Abbas Ghaddar
Ge Zhang
Liheng Ma
Yaochen Hu
Soumyasundar Pal
Bin Wang
Yingxue Zhang
Jianye Hao
Explaining Network Decision Provides Insights on the Causal Interaction Between Brain Regions in a Motor Imagery Task
Davide Borra
Multi-modal Decoding of Reach-to-Grasping from EEG and EMG via Neural Networks
Davide Borra
Matteo Fraternali
Elisa Magosso
Relative biological effectiveness of clinically relevant photon energies for the survival of human colorectal, cervical, and prostate cancer cell lines
Joanna Li
N. Chabaytah
Joud Babik
Behnaz Behmand
H. Bekerat
Tanner Connell
Michael D C Evans
Russell Ruo
T. Vuong
Training Language Models to Self-Correct via Reinforcement Learning
Aviral Kumar
Vincent Zhuang
Rishabh Agarwal
Yi Su
John D Co-Reyes
Avi Singh
Kate Baumli
Shariq N Iqbal
Colton Bishop
Rebecca Roelofs
Lei M Zhang
Kay McKinney
Disha Shrivastava
Cosmin Paduraru
George Tucker
Feryal Behbahani
Aleksandra Faust
Self-correction is a highly desirable capability of large language models (LLMs), yet it has consistently been found to be largely ineffecti… (see more)ve in modern LLMs. Existing approaches for training self-correction either require multiple models or rely on a more capable model or other forms of supervision. To this end, we develop a multi-turn online reinforcement learning (RL) approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data. To build SCoRe, we first show that variants of supervised fine-tuning (SFT) on offline model-generated correction traces are insufficient for instilling self-correction behavior. In particular, we observe that training via SFT either suffers from a distribution mismatch between the training data and the model's own responses or implicitly prefers only a certain mode of correction behavior that is often not effective at test time. SCoRe addresses these challenges by training under the model's own distribution of self-generated correction traces and using appropriate regularization to steer the learning process into learning a self-correction strategy that is effective at test time as opposed to simply fitting high-reward responses for a given prompt. This regularization prescribes running a first phase of RL on a base model to generate a policy initialization that is less susceptible to collapse and then using a reward bonus to amplify self-correction during training. When applied to Gemini 1.0 Pro and 1.5 Flash models, we find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on the MATH and HumanEval benchmarks.
Understanding Web Application Workloads and Their Applications: Systematic Literature Review and Characterization
Roozbeh Aghili
Qiaolin Qin
Heng Li
An Attentive Approach for Building Partial Reasoning Agents from Pixels
Safa Alver
We study the problem of building reasoning agents that are able to generalize in an effective manner. Towards this goal, we propose an end-t… (see more)o-end approach for building model-based reinforcement learning agents that dynamically focus their reasoning to the relevant aspects of the environment: after automatically identifying the distinct aspects of the environment, these agents dynamically filter out the relevant ones and then pass them to their simulator to perform partial reasoning. Unlike existing approaches, our approach works with pixel-based inputs and it allows for interpreting the focal points of the agent. Our quantitative analyses show that the proposed approach allows for effective generalization in high-dimensional domains with raw observational inputs. We also perform ablation analyses to validate our design choices. Finally, we demonstrate through qualitative analyses that our approach actually allows for building agents that focus their reasoning on the relevant aspects of the environment.
An Attentive Approach for Building Partial Reasoning Agents from Pixels
Safa Alver
We study the problem of building reasoning agents that are able to generalize in an effective manner. Towards this goal, we propose an end-t… (see more)o-end approach for building model-based reinforcement learning agents that dynamically focus their reasoning to the relevant aspects of the environment: after automatically identifying the distinct aspects of the environment, these agents dynamically filter out the relevant ones and then pass them to their simulator to perform partial reasoning. Unlike existing approaches, our approach works with pixel-based inputs and it allows for interpreting the focal points of the agent. Our quantitative analyses show that the proposed approach allows for effective generalization in high-dimensional domains with raw observational inputs. We also perform ablation analyses to validate of design choices. Finally, we demonstrate through qualitative analyses that our approach actually allows for building agents that focus their reasoning on the relevant aspects of the environment.
Deep Learning in Ultrasound Localization Microscopy: Applications and Perspectives.
Brice Rauby
Paul Xing
Jean Provost
Ultrasound Localization Microscopy (ULM) is a novel super-resolution imaging technique that can image the vasculature in vivo at depth with … (see more)resolution far beyond the conventional limit of diffraction. By relying on the localization and tracking of clinically approved microbubbles injected in the blood stream, ULM can provide not only anatomical visualization but also hemodynamic quantification of the microvasculature of different tissues. Various deep-learning approaches have been proposed to address challenges in ULM including denoising, improving microbubble localization, estimating blood flow velocity or performing aberration correction. Proposed deep learning methods often outperform their conventional counterparts by improving image quality and reducing processing time. In addition, their robustness to high concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning applications in ULM focusing on approaches assuming a sparse microbubbles distribution. We first provide an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by deep learning model. We also take a deeper look into the numerous approaches that have been proposed to improve the localization of microbubbles since they differ highly in their formulation of the optimization problem, their evaluation, or their network architectures. We finally discuss the current limitations and challenges of these methods, as well as the promises and potential of deep learning for ULM in the future.
An Empirical Study of Sensitive Information in Logs
Roozbeh Aghili
Heng Li