Mechanistic Unlearning: Robust Knowledge Unlearning and Editing via Mechanistic Localization
Phillip Huang Guo
Aaquib Syed
Abhay Sheshadri
Aidan Ewart
Mind the GAP! The Challenges of Scale in Pixel-based Deep Reinforcement Learning
Ghada Sokar
Mitigating Plasticity Loss in Continual Reinforcement Learning by Reducing Churn
Hongyao Tang
Johan Samir Obando Ceron
Plasticity, or the ability of an agent to adapt to new tasks, environments, or distributions, is crucial for continual learning. In this pap… (see more)er, we study the loss of plasticity in deep continual RL from the lens of churn: network output variability for out-of-batch data induced by mini-batch training. We demonstrate that (1) the loss of plasticity is accompanied by the exacerbation of churn due to the gradual rank decrease of the Neural Tangent Kernel (NTK) matrix; (2) reducing churn helps prevent rank collapse and adjusts the step size of regular RL gradients adaptively. Moreover, we introduce Continual Churn Approximated Reduction (C-CHAIN) and demonstrate it improves learning performance and outperforms baselines in a diverse range of continual learning environments on OpenAI Gym Control, ProcGen, DeepMind Control Suite, and MinAtar benchmarks.
A Modular Approach for Clinical SLMs Driven by Synthetic Data with Pre-Instruction Tuning, Model Merging, and Clinical-Tasks Alignment
Jean-Philippe Corbeil
Amin Dada
Jean-Michel Attendu
Asma Ben Abacha
Lucas Caccia
Franccois Beaulieu
Thomas Lin
Jens Kleesiek
Paul Vozila
High computation costs and latency of large language models such as GPT-4 have limited their deployment in clinical settings. Small language… (see more) models (SLMs) offer a cost-effective alternative, but their limited capacity requires biomedical domain adaptation, which remains challenging. An additional bottleneck is the unavailability and high sensitivity of clinical data. To address these challenges, we propose a novel framework for adapting SLMs into high-performing clinical models. We introduce the MediPhi collection of 3.8B-parameter SLMs developed with our novel framework: pre-instruction tuning of experts on relevant medical and clinical corpora (PMC, Medical Guideline, MedWiki, etc.), model merging, and clinical-tasks alignment. To cover most clinical tasks, we extended the CLUE benchmark to CLUE+, doubling its size. Our expert models deliver relative improvements on this benchmark over the base model without any task-specific fine-tuning: 64.3% on medical entities, 49.5% on radiology reports, and 44% on ICD-10 coding (outperforming GPT-4-0125 by 14%). We unify the expert models into MediPhi via model merging, preserving gains across benchmarks. Furthermore, we built the MediFlow collection, a synthetic dataset of 2.5 million high-quality instructions on 14 medical NLP tasks, 98 fine-grained document types, and JSON format support. Alignment of MediPhi using supervised fine-tuning and direct preference optimization achieves further gains of 18.9% on average.
Monitoring morphometric drift in lifelong learning segmentation of the spinal cord
Enamundram Naga Karthik
Sandrine B'edard
Jan Valovsek
Christoph Aigner
Elise Bannier
Josef Bednavr'ik
Virginie Callot
Anna Combes
Armin Curt
Gergely David
Falk Eippert
Lynn Farner
M. G. Fehlings
Patrick Freund
Tobias Granberg
Cristina Granziera
Rhscir Network Imaging Group
Ulrike Horn
Tom'avs Hor'ak
Suzanne Humphreys … (see 36 more)
Markus Hupp
Anne Kerbrat
Nawal Kinany
Shannon Kolind
Petr Kudlivcka
Anna Lebret
L. Lee
Caterina Mainero
Allan R. Martin
Megan McGrath
Govind Nair
Kristin P. O’Grady
Jiwon Oh
Russell Ouellette
Nikolai Pfender
Dario Pfyffer
P. Pradat
Alexandre Prat
Emanuele Pravatà
D. S. Reich
Ilaria Ricchi
Naama Rotem-Kohavi
Simon Schading-Sassenhausen
Maryam Seif
Andrew C. Smith
Seth Aaron Smith
Grace Sweeney
Roger Tam
Anthony Traboulsee
Constantina A. Treaba
Charidimos Tsagkas
Zachary Vavasour
Dimitri Van De Ville
Kenneth A. Weber
Monte Carlo Tree Diffusion for System 2 Planning
Jaesik Yoon
Hyeonseo Cho
Doojin Baek
Sungjin Ahn
Diffusion models have recently emerged as a powerful tool for planning. However, unlike Monte Carlo Tree Search (MCTS)-whose performance nat… (see more)urally improves with additional test-time computation (TTC), standard diffusion-based planners offer only limited avenues for TTC scalability. In this paper, we introduce Monte Carlo Tree Diffusion (MCTD), a novel framework that integrates the generative strength of diffusion models with the adaptive search capabilities of MCTS. Our method reconceptualizes denoising as a tree-structured process, allowing partially denoised plans to be iteratively evaluated, pruned, and refined. By selectively expanding promising trajectories while retaining the flexibility to revisit and improve suboptimal branches, MCTD achieves the benefits of MCTS such as controlling exploration-exploitation trade-offs within the diffusion framework. Empirical results on challenging long-horizon tasks show that MCTD outperforms diffusion baselines, yielding higher-quality solutions as TTC increases.
Multi-Modal Language Models as Text-to-Image Model Evaluators
Jiahui Chen
Candace Ross
Reyhane Askari Hemmat
Koustuv Sinha
Melissa Hall
Michal Drozdzal
Multi-Modal Language Models as Text-to-Image Model Evaluators
Jiahui Chen
Candace Ross
Reyhane Askari Hemmat
Koustuv Sinha
Melissa Hall
Michal Drozdzal
Network Sparsity Unlocks the Scaling Potential of Deep Reinforcement Learning
Guozheng Ma
Lu Li
Zilin Wang
Li Shen
Dacheng Tao
Effectively scaling up deep reinforcement learning models has proven notoriously difficult due to network pathologies during training, moti… (see more)vating various targeted interventions such as periodic reset and architectural advances such as layer normalization. Instead of pursuing more complex modifications, we show that introducing static network sparsity alone can unlock further scaling potential beyond their dense counterparts with state-of-the-art architectures. This is achieved through simple one-shot random pruning, where a predetermined percentage of network weights are randomly removed once before training. Our analysis reveals that, in contrast to naively scaling up dense DRL networks, such sparse networks achieve both higher parameter efficiency for network expressivity and stronger resistance to optimization challenges like plasticity loss and gradient interference. We further extend our evaluation to visual and streaming RL scenarios, demonstrating the consistent benefits of network sparsity.
Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models
Siddarth Venkatraman
Mohsin Hasan
Minsu Kim
Luca Scimeca
Marcin Sendera
Nikolay Malkin
Any well-behaved generative model over a variable …
Plasticity as the Mirror of Empowerment
David Abel
Michael Bowling
Andre Barreto
Will Dabney
Shi Dong
Steven Hansen
Anna Harutyunyan
Clare Lyle
Georgios Piliouras
Jonathan Richens
Mark Rowland
Tom Schaul
Satinder Singh
PoisonBench: Assessing Language Model Vulnerability to Poisoned Preference Data
Tingchen Fu
Mrinank Sharma
Philip Torr
Shay B. Cohen
Fazl Barez
Preference learning is a central component for aligning current LLMs, but this process can be vulnerable to data poisoning attacks. To addre… (see more)ss this concern, we introduce PoisonBench, a benchmark for evaluating large language models' susceptibility to data poisoning during preference learning. Data poisoning attacks can manipulate large language model responses to include hidden malicious content or biases, potentially causing the model to generate harmful or unintended outputs while appearing to function normally. We deploy two distinct attack types across eight realistic scenarios, assessing 22 widely-used models. Our findings reveal concerning trends: (1) Scaling up parameter size does not always enhance resilience against poisoning attacks and the influence on model resilience varies among different model suites. (2) There exists a log-linear relationship between the effects of the attack and the data poison ratio; (3) The effect of data poisoning can generalize to extrapolated triggers that are not included in the poisoned data. These results expose weaknesses in current preference learning techniques, highlighting the urgent need for more robust defenses against malicious models and data manipulation.