Position: Humanity Faces Existential Risk from Gradual Disempowerment
Jan Kulveit
Raymond Douglas
Nora Ammann
Deger Turan
David Duvenaud
The Search for Squawk: Agile Modeling in Bioacoustics
Vincent Dumoulin
Otilia Stretcu
Jenny Hamer
Lauren Harrell
Rob Laber
Bart van Merriënboer
Amanda Navine
Patrick Hart
Ben Williams
Timothy A. C. Lamont
Tries B. Rasak
Mars Coral Restoration Team
Sheryn Brodie
Brendan Doohan
Philip Eichinski
Paul Roe
Lin Schwarzkopf
Tom Denton
The Search for Squawk: Agile Modeling in Bioacoustics
Vincent Dumoulin
Otilia Stretcu
Jenny Hamer
Lauren Harrell
Rob Laber
Bart van Merriënboer
Amanda Navine
Patrick Hart
Ben Williams
Timothy A. C. Lamont
Tries B. Rasak
Mars Coral Restoration Team
Sheryn Brodie
Brendan Doohan
Philip Eichinski
Paul Roe
Lin Schwarzkopf
Tom Denton
Harnessing agent-based frameworks in CellAgentChat to unravel cell-cell interactions from single-cell and spatial transcriptomics
Vishvak Raghavan
Yumin Zheng
Monitoring morphometric drift in lifelong learning segmentation of the spinal cord
Enamundram Naga Karthik
Sandrine B'edard
Jan Valovsek
Christoph Aigner
Elise Bannier
Josef Bednavr'ik
Virginie Callot
Anna Combes
Armin Curt
Gergely David
Falk Eippert
Lynn Farner
M. G. Fehlings
Patrick Freund
Tobias Granberg
Cristina Granziera
Rhscir Network Imaging Group
Ulrike Horn
Tom'avs Hor'ak
Suzanne Humphreys … (see 36 more)
Markus Hupp
Anne Kerbrat
Nawal Kinany
Shannon Kolind
Petr Kudlivcka
Anna Lebret
Lisa Eunyoung Lee
Caterina Mainero
Allan R. Martin
Megan McGrath
Govind Nair
Kristin P. O’Grady
Jiwon Oh
Russell Ouellette
Nikolai Pfender
Dario Pfyffer
P. Pradat
Alexandre Prat
Emanuele Pravatà
D. S. Reich
Ilaria Ricchi
Naama Rotem-Kohavi
Simon Schading-Sassenhausen
Maryam Seif
Andrew C. Smith
Seth Aaron Smith
Grace Sweeney
Roger Tam
Anthony Traboulsee
Constantina A. Treaba
Charidimos Tsagkas
Zachary Vavasour
Dimitri Van De Ville
Kenneth A. Weber
"It was 80% me, 20% AI": Seeking Authenticity in Co-Writing with Large Language Models
Angel Hsing-Chi Hwang
Q. Vera Liao
Su Lin Blodgett
Adam Trischler
Adaptive Cyclic Diffusion for Inference Scaling
Gyubin Lee
Truong Nhat Nguyen Bao
Jaesik Yoon
Dongwoo Lee
Minsu Kim
Sungjin Ahn
Addressing Concept Mislabeling in Concept Bottleneck Models Through Preference Optimization
Emiliano Penaloza
Tianyue H. Zhang
Mateo Espinosa Zarlenga
Aligning Protein Conformation Ensemble Generation with Physical Feedback
Jiarui Lu
Xiaoyin Chen
Stephen Zhewen Lu
Aurelie Lozano
Vijil Chenthamarakshan
Payel Das
Protein dynamics play a crucial role in protein biological functions and properties, and their traditional study typically relies on time-co… (see more)nsuming molecular dynamics (MD) simulations conducted in silico. Recent advances in generative modeling, particularly denoising diffusion models, have enabled efficient accurate protein structure prediction and conformation sampling by learning distributions over crystallographic structures. However, effectively integrating physical supervision into these data-driven approaches remains challenging, as standard energy-based objectives often lead to intractable optimization. In this paper, we introduce Energy-based Alignment (EBA), a method that aligns generative models with feedback from physical models, efficiently calibrating them to appropriately balance conformational states based on their energy differences. Experimental results on the MD ensemble benchmark demonstrate that EBA achieves state-of-the-art performance in generating high-quality protein ensembles. By improving the physical plausibility of generated structures, our approach enhances model predictions and holds promise for applications in structural biology and drug discovery.
BAH Dataset for Ambivalence/Hesitancy Recognition in Videos for Behavioural Change
Manuela Gonz'alez-Gonz'alez
Soufiane Belharbi
Muhammad Osama Zeeshan
Masoumeh Sharafi
Muhammad Haseeb Aslam
Alessandro Lameiras Koerich
Simon Bacon
Eric Granger
Recognizing complex emotions linked to ambivalence and hesitancy (A/H) can play a critical role in the personalization and effectiveness of … (see more)digital behaviour change interventions. These subtle and conflicting emotions are manifested by a discord between multiple modalities, such as facial and vocal expressions, and body language. Although experts can be trained to identify A/H, integrating them into digital interventions is costly and less effective. Automatic learning systems provide a cost-effective alternative that can adapt to individual users, and operate seamlessly within real-time, and resource-limited environments. However, there are currently no datasets available for the design of ML models to recognize A/H. This paper introduces a first Behavioural Ambivalence/Hesitancy (BAH) dataset collected for subject-based multimodal recognition of A/H in videos. It contains videos from 224 participants captured across 9 provinces in Canada, with different age, and ethnicity. Through our web platform, we recruited participants to answer 7 questions, some of which were designed to elicit A/H while recording themselves via webcam with microphone. BAH amounts to 1,118 videos for a total duration of 8.26 hours with 1.5 hours of A/H. Our behavioural team annotated timestamp segments to indicate where A/H occurs, and provide frame- and video-level annotations with the A/H cues. Video transcripts and their timestamps are also included, along with cropped and aligned faces in each frame, and a variety of participants meta-data. We include results baselines for BAH at frame- and video-level recognition in multi-modal setups, in addition to zero-shot prediction, and for personalization using unsupervised domain adaptation. The limited performance of baseline models highlights the challenges of recognizing A/H in real-world videos. The data, code, and pretrained weights are available.
Beyond Scalar Rewards: An Axiomatic Framework for Lexicographic MDPs
Mehran Shakerinava
Bidirectional Information Flow (BIF) - A Sample Efficient Hierarchical Gaussian Process for Bayesian Optimization
Juan David Guerra
Thomas Garbay
Hierarchical Gaussian Process (H-GP) models divide problems into different subtasks, allowing for different models to address each part, mak… (see more)ing them well-suited for problems with inherent hierarchical structure. However, typical H-GP models do not fully take advantage of this structure, only sending information up or down the hierarchy. This one-way coupling limits sample efficiency and slows convergence. We propose Bidirectional Information Flow (BIF), an efficient H-GP framework that establishes bidirectional information exchange between parent and child models in H-GPs for online training. BIF retains the modular structure of hierarchical models - the parent combines subtask knowledge from children GPs - while introducing top-down feedback to continually refine children models during online learning. This mutual exchange improves sample efficiency, enables robust training, and allows modular reuse of learned subtask models. BIF outperforms conventional H-GP Bayesian Optimization methods, achieving up to 85% and 5x higher