Portrait de Foutse Khomh

Foutse Khomh

Membre académique associé
Chaire en IA Canada-CIFAR
Professeur, Polytechnique Montréal, Département de génie informatique et génie logiciel
Sujets de recherche
Apprentissage de la programmation
Apprentissage par renforcement
Apprentissage profond
Exploration des données
Modèles génératifs
Systèmes distribués
Traitement du langage naturel

Biographie

Foutse Khomh est professeur titulaire de génie logiciel à Polytechnique Montréal, titulaire d'une chaire en IA Canada-CIFAR dans le domaine des systèmes logiciels d'apprentissage automatique fiables, et titulaire d'une chaire de recherche FRQ-IVADO sur l'assurance qualité des logiciels pour les applications d'apprentissage automatique.

Il a obtenu un doctorat en génie logiciel de l'Université de Montréal en 2011, avec une bourse d'excellence. Il a également reçu le prix CS-Can/Info-Can du meilleur jeune chercheur en informatique en 2019. Ses recherches portent sur la maintenance et l'évolution des logiciels, l'ingénierie des systèmes d'apprentissage automatique, l'ingénierie en nuage et l’IA/apprentissage automatique fiable et digne de confiance.

Ses travaux ont été récompensés par quatre prix de l’article le plus important Most Influential Paper en dix ans et six prix du meilleur article ou de l’article exceptionnel (Best/Distinguished Paper). Il a également siégé au comité directeur de plusieurs conférences et rencontres : SANER (comme président), MSR, PROMISE, ICPC (comme président) et ICSME (en tant que vice-président). Il a initié et coorganisé le symposium Software Engineering for Machine Learning Applications (SEMLA) et la série d'ateliers Release Engineering (RELENG).

Il est cofondateur du projet CRSNG CREATE SE4AI : A Training Program on the Development, Deployment, and Servicing of Artificial Intelligence-based Software Systems et l'un des chercheurs principaux du projet Dependable Explainable Learning (DEEL). Il est également cofondateur de l'initiative québécoise sur l'IA digne de confiance (Confiance IA Québec). Il fait partie du comité de rédaction de plusieurs revues internationales de génie logiciel (dont IEEE Software, EMSE, JSEP) et est membre senior de l'Institute of Electrical and Electronics Engineers (IEEE).

Étudiants actuels

Collaborateur·rice alumni - Polytechnique
Doctorat - Polytechnique
Doctorat - Polytechnique
Postdoctorat - Polytechnique
Co-superviseur⋅e :
Maîtrise recherche - Polytechnique
Doctorat - Polytechnique
Maîtrise recherche - Polytechnique

Publications

SDLog: A Deep Learning Framework for Detecting Sensitive Information in Software Logs
Roozbeh Aghili
Xingfang Wu
Heng Li
Kernel-Level Event-Based Performance Anomaly Detection in Software Systems under Varying Load Conditions
Anthonia Njoku
Heng Li
Performance Smells in ML and Non-ML Python Projects: A Comparative Study
Franccois Belias
Leuson Da Silva
Cyrine Zid
Logging requirement for continuous auditing of responsible machine learning-based applications
Patrick Loic Foalem
Leuson Da Silva
Heng Li
Ettore Merlo
Leveraging Machine Learning Techniques in Intrusion Detection Systems for Internet of Things
Saeid Jamshidi
Amin Nikanjam
Nafi Kawser Wazed
Prism: Dynamic and Flexible Benchmarking of LLMs Code Generation with Monte Carlo Tree Search
Vahid Majdinasab
Amin Nikanjam
Evaluating and Enhancing Segmentation Model Robustness with Metamorphic Testing
Seif Mzoughi
Mohamed Elshafeia
Towards Assessing Deep Learning Test Input Generators
Seif Mzoughi
Ahmed Haj Yahmed
Mohamed Elshafei
Diego Elias Costa
Evaluating and Enhancing Segmentation Model Robustness with Metamorphic Testing
Seif Mzoughi
Mohamed Elshafeia
Leveraging Machine Learning Techniques in Intrusion Detection Systems for Internet of Things
Saeid Jamshidi
Amin Nikanjam
Kawser Wazed Nafi
As the Internet of Things (IoT) continues to expand, ensuring the security of connected devices has become increasingly critical. Traditiona… (voir plus)l Intrusion Detection Systems (IDS) often fall short in managing the dynamic and large-scale nature of IoT networks. This paper explores how Machine Learning (ML) and Deep Learning (DL) techniques can significantly enhance IDS performance in IoT environments. We provide a thorough overview of various IDS deployment strategies and categorize the types of intrusions common in IoT systems. A range of ML methods -- including Support Vector Machines, Naive Bayes, K-Nearest Neighbors, Decision Trees, and Random Forests -- are examined alongside advanced DL models such as LSTM, CNN, Autoencoders, RNNs, and Deep Belief Networks. Each technique is evaluated based on its accuracy, efficiency, and suitability for real-world IoT applications. We also address major challenges such as high false positive rates, data imbalance, encrypted traffic analysis, and the resource constraints of IoT devices. In addition, we highlight the emerging role of Generative AI and Large Language Models (LLMs) in improving threat detection, automating responses, and generating intelligent security policies. Finally, we discuss ethical and privacy concerns, underscoring the need for responsible and transparent implementation. This paper aims to provide a comprehensive framework for developing adaptive, intelligent, and secure IDS solutions tailored for the evolving landscape of IoT.
Prism: Dynamic and Flexible Benchmarking of LLMs Code Generation with Monte Carlo Tree Search
Vahid Majdinasab
Amin Nikanjam
Towards Assessing Deep Learning Test Input Generators
Seif Mzoughi
Ahmed Haj Yahmed
Mohamed Elshafei
Diego Elias Costa