Portrait de Foutse Khomh

Foutse Khomh

Membre académique associé
Chaire en IA Canada-CIFAR
Professeur, Polytechnique Montréal, Département de génie informatique et génie logiciel
Sujets de recherche
Apprentissage de la programmation
Apprentissage par renforcement
Apprentissage profond
Exploration des données
Modèles génératifs
Systèmes distribués
Traitement du langage naturel

Biographie

Foutse Khomh est professeur titulaire de génie logiciel à Polytechnique Montréal, titulaire d'une chaire en IA Canada-CIFAR dans le domaine des systèmes logiciels d'apprentissage automatique fiables, et titulaire d'une chaire de recherche FRQ-IVADO sur l'assurance qualité des logiciels pour les applications d'apprentissage automatique.

Il a obtenu un doctorat en génie logiciel de l'Université de Montréal en 2011, avec une bourse d'excellence. Il a également reçu le prix CS-Can/Info-Can du meilleur jeune chercheur en informatique en 2019. Ses recherches portent sur la maintenance et l'évolution des logiciels, l'ingénierie des systèmes d'apprentissage automatique, l'ingénierie en nuage et l’IA/apprentissage automatique fiable et digne de confiance.

Ses travaux ont été récompensés par quatre prix de l’article le plus important Most Influential Paper en dix ans et six prix du meilleur article ou de l’article exceptionnel (Best/Distinguished Paper). Il a également siégé au comité directeur de plusieurs conférences et rencontres : SANER (comme président), MSR, PROMISE, ICPC (comme président) et ICSME (en tant que vice-président). Il a initié et coorganisé le symposium Software Engineering for Machine Learning Applications (SEMLA) et la série d'ateliers Release Engineering (RELENG).

Il est cofondateur du projet CRSNG CREATE SE4AI : A Training Program on the Development, Deployment, and Servicing of Artificial Intelligence-based Software Systems et l'un des chercheurs principaux du projet Dependable Explainable Learning (DEEL). Il est également cofondateur de l'initiative québécoise sur l'IA digne de confiance (Confiance IA Québec). Il fait partie du comité de rédaction de plusieurs revues internationales de génie logiciel (dont IEEE Software, EMSE, JSEP) et est membre senior de l'Institute of Electrical and Electronics Engineers (IEEE).

Étudiants actuels

Collaborateur·rice alumni - Polytechnique
Doctorat - Polytechnique
Doctorat - Polytechnique
Postdoctorat - Polytechnique
Co-superviseur⋅e :
Maîtrise recherche - Polytechnique
Maîtrise recherche - Polytechnique
Maîtrise recherche - Polytechnique

Publications

FairFLRep: Fairness aware fault localization and repair of Deep Neural Networks
Moses Openja
Paolo Arcaini
Fuyuki Ishikawa
Deep neural networks (DNNs) are being utilized in various aspects of our daily lives, including high-stakes decision-making applications tha… (voir plus)t impact individuals. However, these systems reflect and amplify bias from the data used during training and testing, potentially resulting in biased behavior and inaccurate decisions. For instance, having different misclassification rates between white and black sub-populations. However, effectively and efficiently identifying and correcting biased behavior in DNNs is a challenge. This paper introduces FairFLRep, an automated fairness-aware fault localization and repair technique that identifies and corrects potentially bias-inducing neurons in DNN classifiers. FairFLRep focuses on adjusting neuron weights associated with sensitive attributes, such as race or gender, that contribute to unfair decisions. By analyzing the input-output relationships within the network, FairFLRep corrects neurons responsible for disparities in predictive quality parity. We evaluate FairFLRep on four image classification datasets using two DNN classifiers, and four tabular datasets with a DNN model. The results show that FairFLRep consistently outperforms existing methods in improving fairness while preserving accuracy. An ablation study confirms the importance of considering fairness during both fault localization and repair stages. Our findings also show that FairFLRep is more efficient than the baseline approaches in repairing the network.
An Empirical Study on Method-Level Performance Evolution in Open-Source Java Projects
Kaveh Shahedi
Nana Gyambrah
Heng Li
Maxime Lamothe
Performance is a critical quality attribute in software development, yet the impact of method-level code changes on performance evolution re… (voir plus)mains poorly understood. While developers often make intuitive assumptions about which types of modifications are likely to cause performance regressions or improvements, these beliefs lack empirical validation at a fine-grained level. We conducted a large-scale empirical study analyzing performance evolution in 15 mature open-source Java projects hosted on GitHub. Our analysis encompassed 739 commits containing 1,499 method-level code changes, using Java Microbenchmark Harness (JMH) for precise performance measurement and rigorous statistical analysis to quantify both the significance and magnitude of performance variations. We employed bytecode instrumentation to capture method-specific execution metrics and systematically analyzed four key aspects: temporal performance patterns, code change type correlations, developer and complexity factors, and domain-size interactions. Our findings reveal that 32.7% of method-level changes result in measurable performance impacts, with regressions occurring 1.3 times more frequently than improvements. Contrary to conventional wisdom, we found no significant differences in performance impact distributions across code change categories, challenging risk-stratified development strategies. Algorithmic changes demonstrate the highest improvement potential but carry substantial regression risk. Senior developers produce more stable changes with fewer extreme variations, while code complexity correlates with increased regression likelihood. Domain-size interactions reveal significant patterns, with web server + small projects exhibiting the highest performance instability. Our study provides empirical evidence for integrating automated performance testing into continuous integration pipelines.
From Technical Excellence to Practical Adoption: Lessons Learned Building an ML-Enhanced Trace Analysis Tool
Kaveh Shahedi
Matthew Khouzam
Heng Li
Maxime Lamothe
System tracing has become essential for understanding complex software behavior in modern systems, yet sophisticated trace analysis tools fa… (voir plus)ce significant adoption gaps in industrial settings. Through a year-long collaboration with Ericsson Montr\'eal, developing TMLL (Trace-Server Machine Learning Library, now in the Eclipse Foundation), we investigated barriers to trace analysis adoption. Contrary to assumptions about complexity or automation needs, practitioners struggled with translating expert knowledge into actionable insights, integrating analysis into their workflows, and trusting automated results they could not validate. We identified what we called the Excellence Paradox: technical excellence can actively impede adoption when conflicting with usability, transparency, and practitioner trust. TMLL addresses this through adoption-focused design that embeds expert knowledge in interfaces, provides transparent explanations, and enables incremental adoption. Validation through Ericsson's experts'feedback, Eclipse Foundation's integration, and a survey of 40 industry and academic professionals revealed consistent patterns: survey results showed that 77.5% prioritize quality and trust in results over technical sophistication, while 67.5% prefer semi-automated analysis with user control, findings supported by qualitative feedback from industrial collaboration and external peer review. Results validate three core principles: cognitive compatibility, embedded expertise, and transparency-based trust. This challenges conventional capability-focused tool development, demonstrating that sustainable adoption requires reorientation toward adoption-focused design with actionable implications for automated software engineering tools.
ReCatcher: Towards LLMs Regression Testing for Code Generation
Altaf Allah Abbassi
Leuson Da Silva
Amin Nikanjam
Large Language Models (LLMs) for code generation evolve rapidly through fine-tuning, merging, or new model releases. However, such updates c… (voir plus)an introduce regressions, not only in correctness but also in code quality and performance. To address this, we present ReCatcher, a regression testing framework for Python code generation. ReCatcher systematically compares two LLMs, typically a current model and a candidate update, across three dimensions: logical correctness, static code quality, and execution performance. We apply ReCatcher to assess regressions across three update scenarios, fine-tuning, merging, and model release, using CodeLlama, DeepSeek-Coder, and GPT-4o. Our evaluation shows that fine-tuning with cross-language datasets increases syntax errors by up to 12%. Merging with general-purpose models like Llama2 leads to regressions in correctness by up to 18%. GPT-4o introduces regressions of up to 50% in handling missing imports compared to GPT-3.5-turbo, while GPT-4o-mini suffers up to 80% performance degradation in execution time versus GPT-4o. Overall, logical correctness, performance, and error handling (e.g., syntax errors and missing imports) are the most regression-prone areas. Comparing ReCatcher with baseline solutions, it presents better and consistent accuracy across logical and performance aspects. ReCatcher highlights the importance of systematic regression evaluation before adopting new models, while assisting researchers and practitioners in making more informed update decisions.
Health data issues in Africa: time for digitization, standardization and harmonization
Abdoelnaser Degoot
Ismaël Koné
Shakuntala Baichoo
Mercy Ngungu
Nzisa Liku
Judit Kumuthini
Joyce Nakatumba-Nabende
Bubacarr Bah
LLMs and Stack Overflow discussions: Reliability, impact, and challenges
Leuson Da Silva
Jordan Samhi
LLMs and Stack Overflow discussions: Reliability, impact, and challenges
Leuson Da Silva
Jordan Samhi
Protecting Privacy in Software Logs: What Should Be Anonymized?
Roozbeh Aghili
Heng Li
Adversarial Attack Classification and Robustness Testing for Large Language Models for Code
Yang Liu
Armstrong Foundjem
Heng Li
Large Language Models (LLMs) have become vital tools in software development tasks such as code generation, completion, and analysis. As the… (voir plus)ir integration into workflows deepens, ensuring robustness against vulnerabilities especially those triggered by diverse or adversarial inputs becomes increasingly important. Such vulnerabilities may lead to incorrect or insecure code generation when models encounter perturbed task descriptions, code, or comments. Prior research often overlooks the role of natural language in guiding code tasks. This study investigates how adversarial perturbations in natural language inputs including prompts, comments, and descriptions affect LLMs for Code (LLM4Code). It examines the effects of perturbations at the character, word, and sentence levels to identify the most impactful vulnerabilities. We analyzed multiple projects (e.g., ReCode, OpenAttack) and datasets (e.g., HumanEval, MBPP), establishing a taxonomy of adversarial attacks. The first dimension classifies the input type code, prompts, or comments while the second dimension focuses on granularity: character, word, or sentence-level changes. We adopted a mixed-methods approach, combining quantitative performance metrics with qualitative vulnerability analysis. LLM4Code models show varying robustness across perturbation types. Sentence-level attacks were least effective, suggesting models are resilient to broader contextual changes. In contrast, word-level perturbations posed serious challenges, exposing semantic vulnerabilities. Character-level effects varied, showing model sensitivity to subtle syntactic deviations.Our study offers a structured framework for testing LLM4Code robustness and emphasizes the critical role of natural language in adversarial evaluation. Improving model resilience to semantic-level disruptions is essential for secure and reliable code-generation systems.
Adversarial Attack Classification and Robustness Testing for Large Language Models for Code
Yang Liu
Armstrong Foundjem
Heng Li
Large Language Models (LLMs) have become vital tools in software development tasks such as code generation, completion, and analysis. As the… (voir plus)ir integration into workflows deepens, ensuring robustness against vulnerabilities especially those triggered by diverse or adversarial inputs becomes increasingly important. Such vulnerabilities may lead to incorrect or insecure code generation when models encounter perturbed task descriptions, code, or comments. Prior research often overlooks the role of natural language in guiding code tasks. This study investigates how adversarial perturbations in natural language inputs including prompts, comments, and descriptions affect LLMs for Code (LLM4Code). It examines the effects of perturbations at the character, word, and sentence levels to identify the most impactful vulnerabilities. We analyzed multiple projects (e.g., ReCode, OpenAttack) and datasets (e.g., HumanEval, MBPP), establishing a taxonomy of adversarial attacks. The first dimension classifies the input type code, prompts, or comments while the second dimension focuses on granularity: character, word, or sentence-level changes. We adopted a mixed-methods approach, combining quantitative performance metrics with qualitative vulnerability analysis. LLM4Code models show varying robustness across perturbation types. Sentence-level attacks were least effective, suggesting models are resilient to broader contextual changes. In contrast, word-level perturbations posed serious challenges, exposing semantic vulnerabilities. Character-level effects varied, showing model sensitivity to subtle syntactic deviations.Our study offers a structured framework for testing LLM4Code robustness and emphasizes the critical role of natural language in adversarial evaluation. Improving model resilience to semantic-level disruptions is essential for secure and reliable code-generation systems.
SDLog: A Deep Learning Framework for Detecting Sensitive Information in Software Logs
Roozbeh Aghili
Xingfang Wu
Heng Li
Mock Deep Testing: Toward Separate Development of Data and Models for Deep Learning
Ruchira Manke
Mohammad Wardat
Hridesh Rajan
While deep learning (DL) has permeated, and become an integral component of many critical software systems, today software engineering resea… (voir plus)rch hasn't explored how to separately test data and models that are integral for DL approaches to work effectively. The main challenge in independently testing these components arises from the tight dependency between data and models. This research explores this gap, introducing our methodology of mock deep testing for unit testing of DL applications. To enable unit testing, we introduce a design paradigm that decomposes the workflow into distinct, manageable components, minimizes sequential dependencies, and modularizes key stages of the DL. For unit testing these components, we propose modeling their dependencies using mocks. This modular approach facilitates independent development and testing of the components, ensuring comprehensive quality assurance throughout the development process. We have developed KUnit, a framework for enabling mock deep testing for the Keras library. We empirically evaluated KUnit to determine the effectiveness of mocks. Our assessment of 50 DL programs obtained from Stack Overflow and GitHub shows that mocks effectively identified 10 issues in the data preparation stage and 53 issues in the model design stage. We also conducted a user study with 36 participants using KUnit to perceive the effectiveness of our approach. Participants using KUnit successfully resolved 25 issues in the data preparation stage and 38 issues in the model design stage. Our findings highlight that mock objects provide a lightweight emulation of the dependencies for unit testing, facilitating early bug detection. Lastly, to evaluate the usability of KUnit, we conducted a post-study survey. The results reveal that KUnit is helpful to DL application developers, enabling them to independently test each component effectively in different stages.