Accueil

Inspirer le développement de l'intelligence artificielle au bénéfice de tous·tes

Un professeur s'entretient avec ses étudiants dans un café/lounge.

Situé au cœur de l’écosystème québécois en intelligence artificielle (IA), Mila rassemble une communauté de plus de 1200 personnes spécialisées en apprentissage automatique et dédiées à l’excellence scientifique et l’innovation.

À propos

À la une
À la une
À la une

Corps professoral

Fondé en 1993 par le professeur Yoshua Bengio, Mila regroupe aujourd'hui plus de 140 professeur·e·s affilié·e·s à l'Université de Montréal, l'Université McGill, Polytechnique Montréal et HEC Montréal. L'institut accueille également des professeur·e·s de l'Université Laval, de l'Université de Sherbrooke, de l'École de technologie supérieure (ÉTS) et de l'Université Concordia.

Consultez l'annuaire en ligne

Photo de Yoshua Bengio

Publications récentes

A stochastic integer programming approach to reserve staff scheduling with preferences
Carl Perreault‐Lafleur
Guy Desaulniers
Ex Post Conditions for the Exactness of Optimal Power Flow Conic Relaxations
Jean-Luc Lupien
Convex relaxations of the optimal power flow (OPF) problem provide an efficient alternative to solving the intractable alternating current (… (voir plus)AC) optimal power flow. The conic subset of OPF convex relaxations, in particular, greatly accelerate resolution while leading to high-quality approximations that are exact in several scenarios. However, the sufficient conditions guaranteeing exactness are stringent, e.g., requiring radial topologies. In this short communication, we present two equivalent ex post conditions for the exactness of any conic relaxation of the OPF. These rely on obtaining either a rank-1 voltage matrix or self-coherent cycles. Instead of relying on sufficient conditions a priori, satisfying one of the presented ex post conditions acts as an exactness certificate for the computed solution. The operator can therefore obtain an optimality guarantee when solving a conic relaxation even when a priori exactness requirements are not met. Finally, we present numerical examples from the MATPOWER library where the ex post conditions hold even though the exactness sufficient conditions do not, thereby illustrating the use of the conditions.
Generalization Limits of Graph Neural Networks in Identity Effects Learning
Giuseppe Alessio D'inverno
Simone Brugiapaglia
Graph Neural Networks (GNNs) have emerged as a powerful tool for data-driven learning on various graph domains. They are usually based on a … (voir plus)message-passing mechanism and have gained increasing popularity for their intuitive formulation, which is closely linked to the Weisfeiler-Lehman (WL) test for graph isomorphism to which they have been proven equivalent in terms of expressive power. In this work, we establish new generalization properties and fundamental limits of GNNs in the context of learning so-called identity effects, i.e., the task of determining whether an object is composed of two identical components or not. Our study is motivated by the need to understand the capabilities of GNNs when performing simple cognitive tasks, with potential applications in computational linguistics and chemistry. We analyze two case studies: (i) two-letters words, for which we show that GNNs trained via stochastic gradient descent are unable to generalize to unseen letters when utilizing orthogonal encodings like one-hot representations; (ii) dicyclic graphs, i.e., graphs composed of two cycles, for which we present positive existence results leveraging the connection between GNNs and the WL test. Our theoretical analysis is supported by an extensive numerical study.
Towards Enhancing the Reproducibility of Deep Learning Bugs: An Empirical Study
Mehil B. Shah
Mohammad Masudur Rahman

IA pour l'humanité

Le développement socialement responsable et bénéfique de l'IA est une dimension fondamentale de la mission de Mila. En tant que chef de file, nous souhaitons contribuer au dialogue social et au développement d'applications qui seront bénéfiques pour la société.

En savoir plus

Une personne regarde un ciel étoilé.