Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Anti-patterns and Code Smells for Multi-language Systems
Large Language Models (LLM) are increasingly trained on data generated by other LLM, either because generated text and images become part of… (voir plus) the pre-training corpus, or because synthetized data is used as a replacement for expensive human-annotation. This raises concerns about \emph{model collapse}, a drop in model performance when their training sets include generated data. Considering that it is easier for both humans and machines to tell between good and bad examples than to generate high-quality samples, we investigate the use of verification on synthesized data to prevent model collapse. We provide a theoretical characterization using Gaussian mixtures, linear classifiers, and linear verifiers to derive conditions with measurable proxies to assess whether the verifier can effectively select synthesized data that leads to optimal performance. We experiment with two practical tasks -- computing matrix eigenvalues with transformers and news summarization with LLMs -- which both exhibit model collapse when trained on generated data, and show that verifiers, even imperfect ones, can indeed be harnessed to prevent model collapse and that our proposed proxy measure strongly correlates with performance.
La comptabilité véhicule souvent injustement, une image terne et ennuyeuse, auprès du grand public et des jeunes étudiants choisissant l… (voir plus)eur orientation. Dans cet article, nous questionnons l’effet de pratiques pédagogiques sur la perception par les étudiants, des soft skills attendues par les employeurs. Pour cela nous réalisons une quasi-expérimentation dans laquelle nous comparons les perceptions des étudiants selon que le cours ait été animé sous un format classique (application des connaissances par le biais d’exercices avec corrigé par l’enseignant) ou sous la forme d’une simulation de gestion (application des connaissances en vue de prendre des décisions et piloter une entreprise fictive). Les résultats de la recherche montrent qu’une simulation de gestion, plus que les travaux dirigés classiques, permettent aux primo-apprenants en comptabilité, d’avoir une meilleure perception des soft skills attendues par les praticiens et les recruteurs. Nos résultats rappellent l’importance de donner une représentation réaliste (éloignée des clichés) de la profession, afin de rendre les filières d’enseignement de la comptabilité plus attractives.
The Value Iteration (VI) algorithm is an iterative procedure to compute the value function of a Markov decision process, and is the basis of… (voir plus) many reinforcement learning (RL) algorithms as well. As the error convergence rate of VI as a function of iteration