Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
This paper introduces the framework of multi-armed sampling, as the sampling counterpart to the optimization problem of multi-arm bandits. O… (see more)ur primary motivation is to rigorously examine the exploration-exploitation trade-off in the context of sampling. We systematically define plausible notions of regret for this framework and establish corresponding lower bounds. We then propose a simple algorithm that achieves these optimal regret bounds. Our theoretical results demonstrate that in contrast to optimization, sampling does not require exploration. To further connect our findings with those of multi-armed bandits, we define a continuous family of problems and associated regret measures that smoothly interpolates and unifies multi-armed sampling and multi-armed bandit problems using a temperature parameter. We believe the multi-armed sampling framework, and our findings in this setting can have a foundational role in the study of sampling including recent neural samplers, akin to the role of multi-armed bandits in reinforcement learning. In particular, our work sheds light on the need for exploration and the convergence properties of algorithm for entropy-regularized reinforcement learning, fine-tuning of pretrained models and reinforcement learning with human feedback (RLHF).
Adapting a pretrained diffusion model to new objectives at inference time remains an open problem in generative modeling. Existing steering … (see more)methods suffer from inaccurate value estimation, especially at high noise levels, which biases guidance. Moreover, information from past runs is not reused to improve sample quality, leading to inefficient use of compute. Inspired by the success of Monte Carlo Tree Search, we address these limitations by casting inference-time alignment as a search problem that reuses past computations. We introduce a tree-based approach that _samples_ from the reward-aligned target density by propagating terminal rewards back through the diffusion chain and iteratively refining value estimates with each additional generation. Our proposed method, Diffusion Tree Sampling (DTS), produces asymptotically exact samples from the target distribution in the limit of infinite rollouts, and its greedy variant Diffusion Tree Search (DTS*) performs a robust search for high reward samples. On MNIST and CIFAR-10 class-conditional generation, DTS matches the FID of the best-performing baseline with up to
Adapting a pretrained diffusion model to new objectives at inference time remains an open problem in generative modeling. Existing steering … (see more)methods suffer from inaccurate value estimation, especially at high noise levels, which biases guidance. Moreover, information from past runs is not reused to improve sample quality, resulting in inefficient use of compute. Inspired by the success of Monte Carlo Tree Search, we address these limitations by casting inference-time alignment as a search problem that reuses past computations. We introduce a tree-based approach that samples from the reward-aligned target density by propagating terminal rewards back through the diffusion chain and iteratively refining value estimates with each additional generation. Our proposed method, Diffusion Tree Sampling (DTS), produces asymptotically exact samples from the target distribution in the limit of infinite rollouts, and its greedy variant, Diffusion Tree Search (DTS