Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relation les décideur·euse·s avec des chercheur·euse·s de pointe en IA grâce à une combinaison de consultations ouvertes et d'exercices de test de faisabilité des politiques. La prochaine session aura lieu les 9 et 10 octobre.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
From Technical Excellence to Practical Adoption: Lessons Learned Building an ML-Enhanced Trace Analysis Tool
System tracing has become essential for understanding complex software behavior in modern systems, yet sophisticated trace analysis tools fa… (voir plus)ce significant adoption gaps in industrial settings. Through a year-long collaboration with Ericsson Montr\'eal, developing TMLL (Trace-Server Machine Learning Library, now in the Eclipse Foundation), we investigated barriers to trace analysis adoption. Contrary to assumptions about complexity or automation needs, practitioners struggled with translating expert knowledge into actionable insights, integrating analysis into their workflows, and trusting automated results they could not validate. We identified what we called the Excellence Paradox: technical excellence can actively impede adoption when conflicting with usability, transparency, and practitioner trust. TMLL addresses this through adoption-focused design that embeds expert knowledge in interfaces, provides transparent explanations, and enables incremental adoption. Validation through Ericsson's experts'feedback, Eclipse Foundation's integration, and a survey of 40 industry and academic professionals revealed consistent patterns: survey results showed that 77.5% prioritize quality and trust in results over technical sophistication, while 67.5% prefer semi-automated analysis with user control, findings supported by qualitative feedback from industrial collaboration and external peer review. Results validate three core principles: cognitive compatibility, embedded expertise, and transparency-based trust. This challenges conventional capability-focused tool development, demonstrating that sustainable adoption requires reorientation toward adoption-focused design with actionable implications for automated software engineering tools.
Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease characterized by excessive extracellular matrix deposition. Current … (voir plus)IPF therapies slow disease progression but do not stop or reverse it. The (myo)fibroblasts are thought to be the main cellular contributors to excessive extracellular matrix production in IPF. Here we show that fibrotic alveolar type II cells regulate production and crosslinking of extracellular matrix via the co-transcriptional activator YAP. YAP leads to increased expression of Lysl oxidase (LOX) and subsequent LOX-mediated crosslinking by fibrotic alveolar type II cells. Pharmacological YAP inhibition via verteporfin reverses fibrotic alveolar type II cell reprogramming and LOX expression in experimental lung fibrosis in vivo and in human fibrotic tissue ex vivo. We thus identify YAP-TEAD/LOX inhibition in alveolar type II cells as a promising potential therapy for IPF patients.
In Kidney Exchange Programs (KEPs), each participating patient is registered together with an incompatible donor. Donors without an incompat… (voir plus)ible patient can also register. Then, KEPs typically maximize overall patient benefit through donor exchanges. This aggregation of benefits calls into question potential individual patient disparities in terms of access to transplantation in KEPs. Considering solely this utilitarian objective may become an issue in the case where multiple exchange plans are optimal or near-optimal. In fact, current KEP policies are all-or-nothing, meaning that only one exchange plan is determined. Each patient is either selected or not as part of that unique solution. In this work, we seek instead to find a policy that contemplates the probability of patients of being in a solution. To guide the determination of our policy, we adapt popular fairness schemes to KEPs to balance the usual approach of maximizing the utilitarian objective. Different combinations of fairness and utilitarian objectives are modelled as conic programs with an exponential number of variables. We propose a column generation approach to solve them effectively in practice. Finally, we make an extensive comparison of the different schemes in terms of the balance of utility and fairness score, and validate the scalability of our methodology for benchmark instances from the literature.
Traditional recommendation systems represent user preferences in dense representations obtained through black-box encoder models. While thes… (voir plus)e models often provide strong recommendation performance, they lack interpretability for users, leaving users unable to understand or control the system’s modeling of their preferences. This limitation is especially challenging in music recommendation, where user preferences are highly personal and often evolve based on nuanced qualities like mood, genre, tempo, or instrumentation.
In this paper, we propose an audio prototypical network for controllable music recommendation. This network expresses user preferences in terms of prototypes representative of semantically meaningful features pertaining to musical qualities. We show that the model obtains competitive recommendation performance compared to popular baseline models while also providing interpretable and controllable user profiles.
Species distribution models (SDMs) are widely used to predict species'geographic distributions, serving as critical tools for ecological res… (voir plus)earch and conservation planning. Typically, SDMs relate species occurrences to environmental variables representing abiotic factors, such as temperature, precipitation, and soil properties. However, species distributions are also strongly influenced by biotic interactions with other species, which are often overlooked. While some methods partially address this limitation by incorporating biotic interactions, they often assume symmetrical pairwise relationships between species and require consistent co-occurrence data. In practice, species observations are sparse, and the availability of information about the presence or absence of other species varies significantly across locations. To address these challenges, we propose CISO, a deep learning-based method for species distribution modeling Conditioned on Incomplete Species Observations. CISO enables predictions to be conditioned on a flexible number of species observations alongside environmental variables, accommodating the variability and incompleteness of available biotic data. We demonstrate our approach using three datasets representing different species groups: sPlotOpen for plants, SatBird for birds, and a new dataset, SatButterfly, for butterflies. Our results show that including partial biotic information improves predictive performance on spatially separate test sets. When conditioned on a subset of species within the same dataset, CISO outperforms alternative methods in predicting the distribution of the remaining species. Furthermore, we show that combining observations from multiple datasets can improve performance. CISO is a promising ecological tool, capable of incorporating incomplete biotic information and identifying potential interactions between species from disparate taxa.
Despite efforts to mitigate the inherent risks and biases of artificial intelligence (AI) algorithms, these algorithms can disproportionatel… (voir plus)y impact culturally marginalized groups. A range of approaches has been proposed to address or reduce these risks, including the development of ethical guidelines and principles for responsible AI, as well as technical solutions that promote algorithmic fairness. Drawing on design justice, expansive learning theory, and recent empirical work on participatory AI, we argue that mitigating these harms requires a fundamental re-architecture of the AI production pipeline. This re-design should center co-production, diversity, equity, inclusion (DEI), and multidisciplinary collaboration. We introduce an augmented AI lifecycle consisting of five interconnected phases: co-framing, co-design, co-implementation, co-deployment, and co-maintenance. The lifecycle is informed by four multidisciplinary workshops and grounded in themes of distributed authority and iterative knowledge exchange. Finally, we relate the proposed lifecycle to several leading ethical frameworks and outline key research questions that remain for scaling participatory governance.
Inverter-based resources (IBRs) can cause instability in weak AC grids. While supplementary damping controllers (SDCs) effectively mitigate … (voir plus)this instability, they are typically designed for specific resonance frequencies but struggle with large shifts caused by changing grid conditions. This paper proposes a deep reinforcement learning-based agent (DRL Agent) as an adaptive SDC to handle shifted resonance frequencies. To address the time-consuming nature of training DRL Agents in electromagnetic transient (EMT) simulations, we coordinate fast root mean square (RMS) and EMT simulations. Resonance frequencies of the weak grid instability are accurately reproduced by RMS simulations to support the training process. The DRL Agent’s efficacy is tested in unseen scenarios outside the training dataset. We then iteratively improve the DRL Agent’s performance by modifying the reward function and hyper-parameters.
Inverter-based resources (IBRs) can cause instability in weak AC grids. While supplementary damping controllers (SDCs) effectively mitigate … (voir plus)this instability, they are typically designed for specific resonance frequencies but struggle with large shifts caused by changing grid conditions. This paper proposes a deep reinforcement learning-based agent (DRL Agent) as an adaptive SDC to handle shifted resonance frequencies. To address the time-consuming nature of training DRL Agents in electromagnetic transient (EMT) simulations, we coordinate fast root mean square (RMS) and EMT simulations. Resonance frequencies of the weak grid instability are accurately reproduced by RMS simulations to support the training process. The DRL Agent’s efficacy is tested in unseen scenarios outside the training dataset. We then iteratively improve the DRL Agent’s performance by modifying the reward function and hyper-parameters.
Performance is a critical quality attribute in software development, yet the impact of method-level code changes on performance evolution re… (voir plus)mains poorly understood. While developers often make intuitive assumptions about which types of modifications are likely to cause performance regressions or improvements, these beliefs lack empirical validation at a fine-grained level. We conducted a large-scale empirical study analyzing performance evolution in 15 mature open-source Java projects hosted on GitHub. Our analysis encompassed 739 commits containing 1,499 method-level code changes, using Java Microbenchmark Harness (JMH) for precise performance measurement and rigorous statistical analysis to quantify both the significance and magnitude of performance variations. We employed bytecode instrumentation to capture method-specific execution metrics and systematically analyzed four key aspects: temporal performance patterns, code change type correlations, developer and complexity factors, and domain-size interactions. Our findings reveal that 32.7% of method-level changes result in measurable performance impacts, with regressions occurring 1.3 times more frequently than improvements. Contrary to conventional wisdom, we found no significant differences in performance impact distributions across code change categories, challenging risk-stratified development strategies. Algorithmic changes demonstrate the highest improvement potential but carry substantial regression risk. Senior developers produce more stable changes with fewer extreme variations, while code complexity correlates with increased regression likelihood. Domain-size interactions reveal significant patterns, with web server + small projects exhibiting the highest performance instability. Our study provides empirical evidence for integrating automated performance testing into continuous integration pipelines.