Le Studio d'IA pour le climat de Mila vise à combler l’écart entre la technologie et l'impact afin de libérer le potentiel de l'IA pour lutter contre la crise climatique rapidement et à grande échelle.
Le programme a récemment publié sa première note politique, intitulée « Considérations politiques à l’intersection des technologies quantiques et de l’intelligence artificielle », réalisée par Padmapriya Mohan.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
We present a method for unsupervised lexical frame acquisition at the syntax–semantics interface. Given a set of input strings derived fro… (voir plus)m dependency parses, our method generates a set of clusters that resemble lexical frame structures. Our work is motivated not only by its practical applications (e.g., to build, or expand the coverage of lexical frame databases), but also to gain linguistic insight into frame structures with respect to lexical distributions in relation to grammatical structures. We model our task using a hierarchical Bayesian network and employ tools and methods from latent variable probabilistic context free grammars (L-PCFGs) for statistical inference and parameter fitting, for which we propose a new split and merge procedure. We show that our model outperforms several baselines on a portion of the Wall Street Journal sentences that we have newly annotated for evaluation purposes.
2018-06-01
Proceedings of the Seventh Joint Conference on Lexical and
Computational Semantics (publié)
Commonsense knowledge bases such as ConceptNet represent knowledge in the form of relational triples. Inspired by recent work by Li et al., … (voir plus)we analyse if knowledge base completion models can be used to mine commonsense knowledge from raw text. We propose novelty of predicted triples with respect to the training set as an important factor in interpreting results. We critically analyse the difficulty of mining novel commonsense knowledge, and show that a simple baseline method that outperforms the previous state of the art on predicting more novel triples.
2018-06-01
Proceedings of the Workshop on Generalization in the Age of Deep Learning (publié)
We introduce an automatic system that performs well on two common-sense reasoning tasks, the Winograd Schema Challenge (WSC) and the Choice … (voir plus)of Plausible Alternatives (COPA). Problem instances from these tasks require diverse, complex forms of inference and knowledge to solve. Our method uses a knowledge-hunting module to gather text from the web, which serves as evidence for candidate problem resolutions. Given an input problem, our system generates relevant queries to send to a search engine. It extracts and classifies knowledge from the returned results and weighs it to make a resolution. Our approach improves F1 performance on the WSC by 0.16 over the previous best and is competitive with the state-of-the-art on COPA, demonstrating its general applicability.
2018-06-01
North American Chapter of the Association for Computational Linguistics (publié)
We present an approach to event coreference resolution by developing a general framework for clustering that uses supervised representation … (voir plus)learning. We propose a neural network architecture with novel Clustering-Oriented Regularization (CORE) terms in the objective function. These terms encourage the model to create embeddings of event mentions that are amenable to clustering. We then use agglomerative clustering on these embeddings to build event coreference chains. For both within- and cross-document coreference on the ECB+ corpus, our model obtains better results than models that require significantly more pre-annotated information. This work provides insight and motivating results for a new general approach to solving coreference and clustering problems with representation learning.
2018-06-01
Proceedings of the Seventh Joint Conference on Lexical and
Computational Semantics (publié)
Software and systems traceability is widely accepted as an essential element for supporting many software development tasks. Today's version… (voir plus) control systems provide inbuilt features that allow developers to tag each commit with one or more issue ID, thereby providing the building blocks from which project-wide traceability can be established between feature requests, bug fixes, commits, source code, and specific developers. However, our analysis of six open source projects showed that on average only 60% of the commits were linked to specific issues. Without these fundamental links the entire set of project-wide links will be incomplete, and therefore not trustworthy. In this paper we address the fundamental problem of missing links between commits and issues. Our approach leverages a combination of process and text-related features characterizing issues and code changes to train a classifier to identify missing issue tags in commit messages, thereby generating the missing links. We conducted a series of experiments to evaluate our approach against six open source projects and showed that it was able to effectively recommend links for tagging issues at an average of 96% recall and 33% precision. In a related task for augmenting a set of existing trace links, the classifier returned precision at levels greater than 89% in all projects and recall of 50%.
2018-05-27
Proceedings of the 40th International Conference on Software Engineering (publié)
This paper presents a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size. MINE… (voir plus) is back-propable and we prove that it is strongly consistent. We illustrate a handful of applications in which MINE is succesfully applied to enhance the property of generative models in both unsupervised and supervised settings. We apply our framework to estimate the information bottleneck, and apply it in tasks related to supervised classification problems. Our results demonstrate substantial added flexibility and improvement in these settings.
We introduce a general-purpose conditioning method for neural networks called FiLM: Feature-wise Linear Modulation. FiLM layers influence ne… (voir plus)ural network computation via a simple, feature-wise affine transformation based on conditioning information. We show that FiLM layers are highly effective for visual reasoning - answering image-related questions which require a multi-step, high-level process - a task which has proven difficult for standard deep learning methods that do not explicitly model reasoning. Specifically, we show on visual reasoning tasks that FiLM layers 1) halve state-of-the-art error for the CLEVR benchmark, 2) modulate features in a coherent manner, 3) are robust to ablations and architectural modifications, and 4) generalize well to challenging, new data from few examples or even zero-shot.
2018-04-29
Proceedings of the AAAI Conference on Artificial Intelligence (publié)
We introduce an incremental processing scheme for convolutional neural network (CNN) inference, targeted at embedded applications with limit… (voir plus)ed memory budgets. Instead of processing layers one by one, individual input pixels are propagated through all parts of the network they can influence under the given structural constraints. This depth-first updating scheme comes with hard bounds on the memory footprint: the memory required is constant in the case of 1D input and proportional to the square root of the input dimension in the case of 2D input.
Usability and user experience (UX) issues are often not well emphasized and addressed in open source software (OSS) development. There is an… (voir plus) imperative need for supporting OSS communities to collaboratively identify, understand, and fix UX design issues in a distributed environment. In this paper, we provide an initial step towards this effort and report on an exploratory study that investigated how the OSS communities currently reported, discussed, negotiated, and eventually addressed usability and UX issues. We conducted in-depth qualitative analysis of selected issue tracking threads from three OSS projects hosted on GitHub. Our findings indicated that discussions about usability and UX issues in OSS communities were largely influenced by the personal opinions and experiences of the participants. Moreover, the characteristics of the community may have greatly affected the focus of such discussion.
2018-04-20
Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems (publié)
A recurrent neural network is a powerful tool for modeling sequential data such as text and speech. While recurrent neural networks have ach… (voir plus)ieved record-breaking results in speech recognition, one remaining challenge is their slow processing speed. The main cause comes from the nature of recurrent neural networks that read only one frame at each time step. Therefore, reducing the number of reads is an effective approach to reducing processing time. In this paper, we propose a novel recurrent neural network architecture called Skip-RNN, which dynamically skips speech frames that are less important. The Skip-RNN consists of an acoustic model network and skip-policy network that are jointly trained to classify speech frames and determine how many frames to skip. We evaluate our proposed approach on the Wall Street Journal corpus and show that it can accelerate acoustic model computation by up to 2.4 times without any noticeable degradation in transcription accuracy.
2018-04-15
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (publié)