Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Fast and Furious Convergence: Stochastic Second Order Methods under Interpolation
We consider stochastic second-order methods for minimizing smooth and strongly-convex functions under an interpolation condition satisfied b… (voir plus)y over-parameterized models. Under this condition, we show that the regularized subsampled Newton method (R-SSN) achieves global linear convergence with an adaptive step-size and a constant batch-size. By growing the batch size for both the subsampled gradient and Hessian, we show that R-SSN can converge at a quadratic rate in a local neighbourhood of the solution. We also show that R-SSN attains local linear convergence for the family of self-concordant functions. Furthermore, we analyze stochastic BFGS algorithms in the interpolation setting and prove their global linear convergence. We empirically evaluate stochastic L-BFGS and a "Hessian-free" implementation of R-SSN for binary classification on synthetic, linearly-separable datasets and real datasets under a kernel mapping. Our experimental results demonstrate the fast convergence of these methods, both in terms of the number of iterations and wall-clock time.
Drawing an inspiration from behavioral studies of human decision making, we propose here a general parametric framework for a reinforcement … (voir plus)learning problem, which extends the standard Q-learning approach to incorporate a two-stream framework of reward processing with biases biologically associated with several neurological and psychiatric conditions, including Parkinson's and Alzheimer's diseases, attention-deficit/hyperactivity disorder (ADHD), addiction, and chronic pain. For the AI community, the development of agents that react differently to different types of rewards can enable us to understand a wide spectrum of multi-agent interactions in complex real-world socioeconomic systems. Empirically, the proposed model outperforms Q-Learning and Double Q-Learning in artificial scenarios with certain reward distributions and real-world human decision making gambling tasks. Moreover, from the behavioral modeling perspective, our parametric framework can be viewed as a first step towards a unifying computational model capturing reward processing abnormalities across multiple mental conditions and user preferences in long-term recommendation systems.
Imitation learning seeks to learn an expert policy from sampled demonstrations. However, in the real world, it is often difficult to find a … (voir plus)perfect expert and avoiding dangerous behaviors becomes relevant for safety reasons. We present the idea of \textit{learning to avoid}, an objective opposite to imitation learning in some sense, where an agent learns to avoid a demonstrator policy given an environment. We define avoidance learning as the process of optimizing the agent's reward while avoiding dangerous behaviors given by a demonstrator. In this work we develop a framework of avoidance learning by defining a suitable objective function for these problems which involves the \emph{distance} of state occupancy distributions of the expert and demonstrator policies. We use density estimates for state occupancy measures and use the aforementioned distance as the reward bonus for avoiding the demonstrator. We validate our theory with experiments using a wide range of partially observable environments. Experimental results show that we are able to improve sample efficiency during training compared to state of the art policy optimization and safety methods.
Continuous control tasks in reinforcement learning are important because they provide an important framework for learning in high-dimensiona… (voir plus)l state spaces with deceptive rewards, where the agent can easily become trapped into suboptimal solutions. One way to avoid local optima is to use a population of agents to ensure coverage of the policy space, yet learning a population with the "best" coverage is still an open problem. In this work, we present a novel approach to population-based RL in continuous control that leverages properties of normalizing flows to perform attractive and repulsive operations between current members of the population and previously observed policies. Empirical results on the MuJoCo suite demonstrate a high performance gain for our algorithm compared to prior work, including Soft-Actor Critic (SAC).
Learning good representations without supervision is still an open issue in machine learning, and is particularly challenging for speech sig… (voir plus)nals, which are often characterized by long sequences with a complex hierarchical structure. Some recent works, however, have shown that it is possible to derive useful speech representations by employing a self-supervised encoder-discriminator approach. This paper proposes an improved self-supervised method, where a single neural encoder is followed by multiple workers that jointly solve different self-supervised tasks. The needed consensus across different tasks naturally imposes meaningful constraints to the encoder, contributing to discover general representations and to minimize the risk of learning superficial ones. Experiments show that the proposed approach can learn transferable, robust, and problem-agnostic features that carry on relevant information from the speech signal, such as speaker identity, phonemes, and even higher-level features such as emotional cues. In addition, a number of design choices make the encoder easily exportable, facilitating its direct usage or adaptation to different problems.
Learning good representations is of crucial importance in deep learning. Mutual Information (MI) or similar measures of statistical dependen… (voir plus)ce are promising tools for learning these representations in an unsupervised way. Even though the mutual information between two random variables is hard to measure directly in high dimensional spaces, some recent studies have shown that an implicit optimization of MI can be achieved with an encoder-discriminator architecture similar to that of Generative Adversarial Networks (GANs). In this work, we learn representations that capture speaker identities by maximizing the mutual information between the encoded representations of chunks of speech randomly sampled from the same sentence. The proposed encoder relies on the SincNet architecture and transforms raw speech waveform into a compact feature vector. The discriminator is fed by either positive samples (of the joint distribution of encoded chunks) or negative samples (from the product of the marginals) and is trained to separate them. We report experiments showing that this approach effectively learns useful speaker representations, leading to promising results on speaker identification and verification tasks. Our experiments consider both unsupervised and semi-supervised settings and compare the performance achieved with different objective functions.