Origin of Nonlinear Circular Photocurrent in 2D Semiconductor
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>
Yanchong Zhao
Fengyu Chen
Jing Liang
Mohammad Saeed Bahramy
Mingwei Yang
Yao Guang
Xiaomei Li
Zheng Wei
Jiaojiao Zhao
Mengzhou Liao
Cheng Shen
Qinqin Wang
Rong Yang
Kenji Watanabe
Takashi Taniguchi
Zhiheng Huang
Dongxia Shi
Kaihui Liu
Zhipei Sun … (voir 3 de plus)
Ji Feng
Luojun Du
Guangyu Zhang
Origin of Nonlinear Circular Photocurrent in 2D Semiconductor MoS_{2}.
Yanchong Zhao
Fengyu Chen
Jing Liang
Mohammad Saeed Bahramy
Mingwei Yang
Yao Guang
Xiaomei Li
Zheng Wei
Jiaojiao Zhao
Mengzhou Liao
Cheng Shen
Qinqin Wang
Rong Yang
Kenji Watanabe
Takashi Taniguchi
Zhiheng Huang
Dongxia Shi
Kaihui Liu
Zhipei Sun … (voir 3 de plus)
Ji Feng
Luojun Du
Guangyu Zhang
The use of extended reality in anesthesiology education: a scoping review
Gianluca Bertolizio
Yu Tong Huang
Marta Garbin
Elena Guadagno
Learning Multi-agent Multi-machine Tending by Mobile Robots
Abdalwhab Abdalwhab
David St-Onge
Robotics can help address the growing worker shortage challenge of the manufacturing industry. As such, machine tending is a task collaborat… (voir plus)ive robots can tackle that can also highly boost productivity. Nevertheless, existing robotics systems deployed in that sector rely on a fixed single-arm setup, whereas mobile robots can provide more flexibility and scalability. In this work, we introduce a multi-agent multi-machine tending learning framework by mobile robots based on Multi-agent Reinforcement Learning (MARL) techniques with the design of a suitable observation and reward. Moreover, an attention-based encoding mechanism is developed and integrated into Multi-agent Proximal Policy Optimization (MAPPO) algorithm to boost its performance for machine tending scenarios. Our model (AB-MAPPO) outperformed MAPPO in this new challenging scenario in terms of task success, safety, and resources utilization. Furthermore, we provided an extensive ablation study to support our various design decisions.
Scalable Equilibrium Sampling with Sequential Boltzmann Generators
Charlie B. Tan
Chen Lin
Leon Klein
Michael M. Bronstein
Alexander Tong
Scalable sampling of molecular states in thermodynamic equilibrium is a long-standing challenge in statistical physics. Boltzmann generators… (voir plus) tackle this problem by pairing powerful normalizing flows with importance sampling to obtain statistically independent samples under the target distribution. In this paper, we extend the Boltzmann generator framework and introduce Sequential Boltzmann generators (SBG) with two key improvements. The first is a highly efficient non-equivariant Transformer-based normalizing flow operating directly on all-atom Cartesian coordinates. In contrast to equivariant continuous flows of prior methods, we leverage exactly invertible non-equivariant architectures which are highly efficient both during sample generation and likelihood computation. As a result, this unlocks more sophisticated inference strategies beyond standard importance sampling. More precisely, as a second key improvement we perform inference-time scaling of flow samples using annealed Langevin dynamics which transports samples toward the target distribution leading to lower variance (annealed) importance weights which enable higher fidelity resampling with sequential Monte Carlo. SBG achieves state-of-the-art performance w.r.t. all metrics on molecular systems, demonstrating the first equilibrium sampling in Cartesian coordinates of tri, tetra, and hexapeptides that were so far intractable for prior Boltzmann generators.
Scalable Equilibrium Sampling with Sequential Boltzmann Generators
Charlie B. Tan
Chen Lin
Leon Klein
Michael M. Bronstein
Alexander Tong
Scalable sampling of molecular states in thermodynamic equilibrium is a long-standing challenge in statistical physics. Boltzmann generators… (voir plus) tackle this problem by pairing powerful normalizing flows with importance sampling to obtain statistically independent samples under the target distribution. In this paper, we extend the Boltzmann generator framework and introduce Sequential Boltzmann generators (SBG) with two key improvements. The first is a highly efficient non-equivariant Transformer-based normalizing flow operating directly on all-atom Cartesian coordinates. In contrast to equivariant continuous flows of prior methods, we leverage exactly invertible non-equivariant architectures which are highly efficient both during sample generation and likelihood computation. As a result, this unlocks more sophisticated inference strategies beyond standard importance sampling. More precisely, as a second key improvement we perform inference-time scaling of flow samples using annealed Langevin dynamics which transports samples toward the target distribution leading to lower variance (annealed) importance weights which enable higher fidelity resampling with sequential Monte Carlo. SBG achieves state-of-the-art performance w.r.t. all metrics on molecular systems, demonstrating the first equilibrium sampling in Cartesian coordinates of tri, tetra, and hexapeptides that were so far intractable for prior Boltzmann generators.
The In-Situ Effect of Offensive Ads on Search Engine Users
Elad Yom-Tov
Liat Levontin
On the Dichotomy Between Privacy and Traceability in ℓp Stochastic Convex Optimization
Sasha Voitovych
MAHDI HAGHIFAM
Idan Attias
Roi Livni
Daniel M. Roy
On the Dichotomy Between Privacy and Traceability in ℓp Stochastic Convex Optimization
Sasha Voitovych
MAHDI HAGHIFAM
Idan Attias
Roi Livni
Daniel M. Roy
On the Dichotomy Between Privacy and Traceability in $\ell_p$ Stochastic Convex Optimization
Sasha Voitovych
MAHDI HAGHIFAM
Idan Attias
Roi Livni
Daniel M. Roy
In this paper, we investigate the necessity of memorization in stochastic convex optimization (SCO) under …
On the Dichotomy Between Privacy and Traceability in $\ell_p$ Stochastic Convex Optimization
Sasha Voitovych
MAHDI HAGHIFAM
Idan Attias
Roi Livni
Daniel M. Roy
In this paper, we investigate the necessity of memorization in stochastic convex optimization (SCO) under …
On Traceability in $\ell_p$ Stochastic Convex Optimization
Sasha Voitovych
MAHDI HAGHIFAM
Idan Attias
Roi Livni
Daniel M. Roy
In this paper, we investigate the necessity of traceability for accurate learning in stochastic convex optimization (SCO) under …