C AUSAL R: Causal Reasoning over Natural Language Rulebases
Jason Weston
Antoine Bordes
Sumit Chopra
Thomas Wolf
Lysandre Debut
Julien Victor Sanh
Clement Chaumond
Anthony Delangue
Pier-339 Moi
Tim ric Cistac
R´emi Rault
Morgan Louf
Funtow-900 Joe
Sam Davison
Patrick Shleifer
Von Platen
Clara Ma
Yacine Jernite
Julien Plu
Canwen Xu … (voir 6 de plus)
Zhilin Yang
Peng Qi
Saizheng Zhang
William W Cohen
Russ Salakhutdinov
Transformers have been shown to be able to 001 perform deductive reasoning on a logical rule-002 base containing rules and statements writte… (voir plus)n 003 in natural language. Recent works show that 004 such models can also produce the reasoning 005 steps (i.e., the proof graph ) that emulate the 006 model’s logical reasoning process. But these 007 models behave as a black-box unit that emu-008 lates the reasoning process without any causal 009 constraints in the reasoning steps, thus ques-010 tioning the faithfulness. In this work, we frame 011 the deductive logical reasoning task as a causal 012 process by defining three modular components: 013 rule selection, fact selection, and knowledge 014 composition. The rule and fact selection steps 015 select the candidate rule and facts to be used 016 and then the knowledge composition combines 017 them to generate new inferences. This ensures 018 model faithfulness by assured causal relation 019 from the proof step to the inference reasoning. 020 To test our causal reasoning framework, we 021 propose C AUSAL R where the above three com-022 ponents are independently modeled by trans-023 formers. We observe that C AUSAL R is robust 024 to novel language perturbations, and is com-025 petitive with previous works on existing rea-026 soning datasets. Furthermore, the errors made 027 by C AUSAL R are more interpretable due to 028 the multi-modular approach compared to black-029 box generative models. 1 030
Automatic Fall Risk Detection based on Imbalanced Data
Yen-Hung Liu
Ye Liu
Patrick C. K. Hung
Farkhund Iqbal
In recent years, the declining birthrate and aging population have gradually brought countries into an ageing society. Regarding accidents t… (voir plus)hat occur amongst the elderly, falls are an essential problem that quickly causes indirect physical loss. In this paper, we propose a pose estimation-based fall detection algorithm to detect fall risks. We use body ratio, acceleration and deflection as key features instead of using the body keypoints coordinates. Since fall data is rare in real-world situations, we train and evaluate our approach in a highly imbalanced data setting. We assess not only different imbalanced data handling methods but also different machine learning algorithms. After oversampling on our training data, the K-Nearest Neighbors (KNN) algorithm achieves the best performance. The F1 scores for three different classes, Normal, Fall, and Lying, are 1.00, 0.85 and 0.96, which is comparable to previous research. The experiment shows that our approach is more interpretable with the key feature from skeleton information. Moreover, it can apply in multi-people scenarios and has robustness on medium occlusion.
BabyAI 1.1
David Y. T. Hui
Maxime Chevalier-Boisvert
The BabyAI platform is designed to measure the sample efficiency of training an agent to follow grounded-language instructions. BabyAI 1.0 … (voir plus)presents baseline results of an agent trained by deep imitation or reinforcement learning. BabyAI 1.1 improves the agent’s architecture in three minor ways. This increases reinforcement learning sample efficiency by up to 3 × and improves imitation learning performance on the hardest level from 77% to 90 . 4% . We hope that these improvements increase the computational efficiency of BabyAI experiments and help users design better agents.
BabyAI 1.1
David Y. T. Hui
Maxime Chevalier-Boisvert
Batch Reinforcement Learning Through Continuation Method
Yijie Guo
Shengyu Feng
Ed Chi
Honglak Lee
Minmin Chen
Many real-world applications of reinforcement learning (RL) require the agent to learn from a fixed set of trajectories, without collecting … (voir plus)new interactions. Policy optimization under this setting is extremely challenging as: 1) the geometry of the objective function is hard to optimize efficiently; 2) the shift of data distributions causes high noise in the value estimation. In this work, we propose a simple yet effective policy iteration approach to batch RL using global optimization techniques known as continuation. By constraining the difference between the learned policy and the behavior policy that generates the fixed trajectories, and continuously relaxing the constraint, our method 1) helps the agent escape local optima; 2) reduces the error in policy evaluation in the optimization procedure. We present results on a variety of control tasks, game environments, and a recommendation task to empirically demonstrate the efficacy of our proposed method.
CAMAP: Artificial neural networks unveil the role of 1 codon arrangement in modulating MHC-I peptides 2 presentation
Tariq Daouda
Maude Dumont-Lagacé
Albert Feghaly
Yahya Benslimane
6. Rébecca
Panes
Mathieu Courcelles
Mohamed Benhammadi
Lea Harrington
Pierre Thibault
François Major
Étienne Gagnon
Claude Perreault
30 MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and 31 neoplastic cells by CD8 T cells. However… (voir plus), accurately predicting the MAP repertoire remains 32 difficult, because only a fraction of the transcriptome generates MAPs. In this study, we 33 investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We 34 developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), 35 predicting MAP presentation solely from mRNA sequences flanking the MAP-coding codons 36 (MCCs), while excluding the MCC per se . CAMAP predictions were significantly more accurate 37 when using original codon sequences than shuffled codon sequences which reflect amino acid 38 usage. Furthermore, predictions were independent of mRNA expression and MAP binding affinity 39 to MHC-I molecules and applied to several cell types and species. Combining MAP ligand scores, 40 transcript expression level and CAMAP scores was particularly useful to increaser MAP prediction 41 accuracy. Using an in vitro assay, we showed that varying the synonymous codons in the regions 42 flanking the MCCs (without changing the amino acid sequence) resulted in significant modulation 43 of MAP presentation at the cell surface. Taken together, our results demonstrate the role of codon 44 arrangement in the regulation of MAP presentation and support integration of both translational 45 and post-translational events in predictive algorithms to ameliorate modeling of the 46 immunopeptidome. 47 48 49 they modulated the levels of SIINFEKL presentation in both constructs, but enhanced translation efficiency could only be detected for OVA-RP. These data show that codon arrangement can modulate MAP presentation strength without any changes in the amino
CAMAP: Artificial neural networks unveil the role of 1 codon arrangement in modulating MHC-I peptides 2 presentation discovery of minor histocompatibility with
Tariq Daouda
Maude Dumont-Lagacé
Albert Feghaly
Yahya Benslimane
6. Rébecca
Panes
Mathieu Courcelles
Mohamed Benhammadi
Lea Harrington
Pierre Thibault
François Major
Étienne Gagnon
Claude Perreault
30 MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and 31 neoplastic cells by CD8 T cells. However… (voir plus), accurately predicting the MAP repertoire remains 32 difficult, because only a fraction of the transcriptome generates MAPs. In this study, we 33 investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We 34 developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), 35 predicting MAP presentation solely from mRNA sequences flanking the MAP-coding codons 36 (MCCs), while excluding the MCC per se . CAMAP predictions were significantly more accurate 37 when using original codon sequences than shuffled codon sequences which reflect amino acid 38 usage. Furthermore, predictions were independent of mRNA expression and MAP binding affinity 39 to MHC-I molecules and applied to several cell types and species. Combining MAP ligand scores, 40 transcript expression level and CAMAP scores was particularly useful to increaser MAP prediction 41 accuracy. Using an in vitro assay, we showed that varying the synonymous codons in the regions 42 flanking the MCCs (without changing the amino acid sequence) resulted in significant modulation 43 of MAP presentation at the cell surface. Taken together, our results demonstrate the role of codon 44 arrangement in the regulation of MAP presentation and support integration of both translational 45 and post-translational events in predictive algorithms to ameliorate modeling of the 46 immunopeptidome. 47 48 49 they modulated the levels of SIINFEKL presentation in both constructs, but enhanced translation efficiency could only be detected for OVA-RP. These data show that codon arrangement can modulate MAP presentation strength without any changes in the amino
Can Open Source Licenses Help Regulate Lethal Autonomous Weapons?
Cheng Lin
Lethal autonomous weapon systems (LAWS, ethal autonomous weapon also known as killer robots) are a real and emerging technology that have th… (voir plus)e potential to radically transform warfare. Because of the myriad of moral, legal, privacy, and security risks the technology introduces, many scholars and advocates have called for a ban on the development, production, and use of fully autonomous weapons [1], [2].
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
Dinghuai Zhang
Kartik Ahuja
Yilun Xu
Yisen Wang
Can models with particular structure avoid being biased towards spurious correlation in out-of-distribution (OOD) generalization? Peters et … (voir plus)al. (2016) provides a positive answer for linear cases. In this paper, we use a functional modular probing method to analyze deep model structures under OOD setting. We demonstrate that even in biased models (which focus on spurious correlation) there still exist unbiased functional subnetworks. Furthermore, we articulate and demonstrate the functional lottery ticket hypothesis: full network contains a subnetwork that can achieve better OOD performance. We then propose Modular Risk Minimization to solve the subnetwork selection problem. Our algorithm learns the subnetwork structure from a given dataset, and can be combined with any other OOD regularization methods. Experiments on various OOD generalization tasks corroborate the effectiveness of our method.
Capacity Expansion in the College Admission Problem
Federico Bobbio
Andrea Lodi
Alfredo Torrico
Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning in NLP Using Fewer Parameters & Less Data
Jonathan Pilault
Amine El hattami
Multi-Task Learning (MTL) networks have emerged as a promising method for transferring learned knowledge across different tasks. However, MT… (voir plus)L must deal with challenges such as: overfitting to low resource tasks, catastrophic forgetting, and negative task transfer, or learning interference. Often, in Natural Language Processing (NLP), a separate model per task is needed to obtain the best performance. However, many fine-tuning approaches are both parameter inefficient, i.e., potentially involving one new model per task, and highly susceptible to losing knowledge acquired during pretraining. We propose a novel Transformer based Hypernetwork Adapter consisting of a new conditional attention mechanism as well as a set of task-conditioned modules that facilitate weight sharing. Through this construction, we achieve more efficient parameter sharing and mitigate forgetting by keeping half of the weights of a pretrained model fixed. We also use a new multi-task data sampling strategy to mitigate the negative effects of data imbalance across tasks. Using this approach, we are able to surpass single task fine-tuning methods while being parameter and data efficient (using around 66% of the data). Compared to other BERT Large methods on GLUE, our 8-task model surpasses other Adapter methods by 2.8% and our 24-task model outperforms by 0.7-1.0% models that use MTL and single task fine-tuning. We show that a larger variant of our single multi-task model approach performs competitively across 26 NLP tasks and yields state-of-the-art results on a number of test and development sets.
A Consciousness-Inspired Planning Agent for Model-Based Reinforcement Learning
Harry Zhao
Mingde Zhao
Zhen Liu
Sitao Luan
Shuyuan Zhang
We present an end-to-end, model-based deep reinforcement learning agent which dynamically attends to relevant parts of its state during plan… (voir plus)ning. The agent uses a bottleneck mechanism over a set-based representation to force the number of entities to which the agent attends at each planning step to be small. In experiments, we investigate the bottleneck mechanism with several sets of customized environments featuring different challenges. We consistently observe that the design allows the planning agents to generalize their learned task-solving abilities in compatible unseen environments by attending to the relevant objects, leading to better out-of-distribution generalization performance.