Extracting Weighted Automata for Approximate Minimization in Language Modelling
HAD-Net: A Hierarchical Adversarial Knowledge Distillation Network for Improved Enhanced Tumour Segmentation Without Post-Contrast Images
Saverio Vadacchino
Raghav Mehta
Nazanin Mohammadi Sepahvand
Brennan Nichyporuk
James J. Clark
Segmentation of enhancing tumours or lesions from MRI is important for detecting new disease activity in many clinical contexts. However, ac… (voir plus)curate segmentation requires the inclusion of medical images (e.g., T1 post-contrast MRI) acquired after injecting patients with a contrast agent (e.g., Gadolinium), a process no longer thought to be safe. Although a number of modality-agnostic segmentation networks have been developed over the past few years, they have been met with limited success in the context of enhancing pathology segmentation. In this work, we present HAD-Net, a novel offline adversarial knowledge distillation (KD) technique, whereby a pre-trained teacher segmentation network, with access to all MRI sequences, teaches a student network, via hierarchical adversarial training, to better overcome the large domain shift presented when crucial images are absent during inference. In particular, we apply HAD-Net to the challenging task of enhancing tumour segmentation when access to post-contrast imaging is not available. The proposed network is trained and tested on the BraTS 2019 brain tumour segmentation challenge dataset, where it achieves performance improvements in the ranges of 16% - 26% over (a) recent modality-agnostic segmentation methods (U-HeMIS, U-HVED), (b) KD-Net adapted to this problem, (c) the pre-trained student network and (d) a non-hierarchical version of the network (AD-Net), in terms of Dice scores for enhancing tumour (ET). The network also shows improvements in tumour core (TC) Dice scores. Finally, the network outperforms both the baseline student network and AD-Net in terms of uncertainty quantification for enhancing tumour segmentation based on the BraTS 2019 uncertainty challenge metrics. Our code is publicly available at: https://github.com/SaverioVad/HAD_Net
Monitoring non-pharmaceutical public health interventions during the COVID-19 pandemic
Yannan Shen
Guido Powell
Iris Ganser
Qulu Zheng
Chris Grundy
Anya Okhmatovskaia
Generating community measures of food purchasing activities using store-level electronic grocery transaction records: an ecological study in Montreal, Canada
Hiroshi Mamiya
Alexandra M. Schmidt
Erica E.M. Moodie
Yu Ma
Deep Learning for Detecting Extreme Weather Patterns
Mayur Mudigonda
Mayur Mudigonda, Prabhat Ram
Prabhat Ram
Karthik Kashinath
Evan Racah
Ankur Mahesh
Yunjie Liu
Christopher Beckham
Jim Biard
Thorsten Kurth
Sookyung Kim
Burlen Loring
Travis O'Brien
K. Kunkel
Kenneth E. Kunkel
M. Wehner
Michael F. Wehner … (voir 2 de plus)
W. Collins
William D. Collins
Magnetoencephalography resting-state correlates of executive and language components of verbal fluency
Victor Oswald
Younes Zerouali
Aubrée Boulet-Craig
M. Krajinovic
Caroline Laverdière
D. Sinnett
Pierre W. Jolicoeur
Sarah Lippé
Philippe Robaey
Lacking social support is associated with structural divergences in hippocampus–default network co-variation patterns
Chris Zajner
Nathan Spreng
Elaborate social interaction is a pivotal asset of the human species. The complexity of people’s social lives may constitute the dominatin… (voir plus)g factor in the vibrancy of many individuals’ environment. The neural substrates linked to social cognition thus appear especially susceptible when people endure periods of social isolation: here, we zoom in on the systematic inter-relationships between two such neural substrates, the allocortical hippocampus (HC) and the neocortical default network (DN). Previous human social neuroscience studies have focused on the DN, while HC subfields have been studied in most detail in rodents and monkeys. To bring into contact these two separate research streams, we directly quantified how DN subregions are coherently co-expressed with specific HC subfields in the context of social isolation. A two-pronged decomposition of structural brain scans from ∼40,000 UK Biobank participants linked lack of social support to mostly lateral subregions in the DN patterns. This lateral DN association co-occurred with HC patterns that implicated especially subiculum, presubiculum, CA2, CA3, and dentate gyrus. Overall, the subregion divergences within spatially overlapping signatures of HC-DN co-variation followed a clear segregation divide into the left and right brain hemispheres. Separable regimes of structural HC-DN co-variation also showed distinct associations with the genetic predisposition for lacking social support at the population level.
Loneliness is linked to specific subregional alterations in hippocampus-default network covariation
Chris Zajner
Nathan Spreng
A modified Thompson sampling-based learning algorithm for unknown linear systems
Yi. Ouyang
Mukul Gagrani
Rahul Jain
We revisit the Thompson sampling-based learning algorithm for controlling an unknown linear system with quadratic cost proposed in [1]. This… (voir plus) algorithm operates in episodes of dynamic length and it is shown to have a regret bound of
Toward Optimal Solution for the Context-Attentive Bandit Problem
Djallel Bouneffouf
Raphael Feraud
Sohini Upadhyay
Yasaman Khazaeni
Scalable Regret for Learning to Control Network-Coupled Subsystems With Unknown Dynamics
Sagar Sudhakara
Ashutosh Nayyar
Yi. Ouyang
In this article, we consider the problem of controlling an unknown linear quadratic Gaussian (LQG) system consisting of multiple subsystems … (voir plus)connected over a network. Our goal is to minimize and quantify the regret (i.e., loss in performance) of our learning and control strategy with respect to an oracle who knows the system model. Upfront viewing the interconnected subsystems globally and directly using existing LQG learning algorithms for the global system results in a regret that increases super-linearly with the number of subsystems. Instead, we propose a new Thompson sampling-based learning algorithm which exploits the structure of the underlying network. We show that the expected regret of the proposed algorithm is bounded by
Generic acquisition protocol for quantitative MRI of the spinal cord
Eva Alonso‐Ortiz
Mihael Abramovic
Carina Arneitz
Nicole Atcheson
Laura Barlow
Robert L. Barry
Markus Barth
Marco Battiston
Christian Büchel
Matthew D. Budde
Virginie Callot
Anna J. E. Combes
Benjamin De Leener
Maxime Descoteaux
Paulo Loureiro de Sousa
Marek Dostál
Julien Doyon
Adam Dvorak
Falk Eippert … (voir 71 de plus)
Karla R. Epperson
Kevin S. Epperson
Patrick Freund
Jürgen Finsterbusch
Alexandru Foias
Michela Fratini
Issei Fukunaga
Claudia A. M. Gandini Wheeler-Kingshott
Giancarlo Germani
Guillaume Gilbert
Federico Giove
Charley Gros
Francesco Grussu
Akifumi Hagiwara
Pierre-Gilles Henry
Tomáš Horák
Masaaki Hori
James Joers
Kouhei Kamiya
Haleh Karbasforoushan
Miloš Keřkovský
Ali Khatibi
Joo‐Won Kim
Nawal Kinany
Hagen H. Kitzler
Shannon Kolind
Yazhuo Kong
Petr Kudlička
Paul Kuntke
Nyoman D. Kurniawan
Slawomir Kusmia
René Labounek
Maria Marcella Lagana
Cornelia Laule
Christine S. Law
Christophe Lenglet
Tobias Leutritz
Yaou Liu
Sara Llufriu
Sean Mackey
Eloy Martinez-Heras
Loan Mattera
Igor Nestrašil
Kristin P. O’Grady
Nico Papinutto
Daniel Papp
Deborah Pareto
Todd B. Parrish
Anna Pichiecchio
Ferran Prados
Àlex Rovira
Marc J. Ruitenberg
Rebecca S. Samson
Giovanni Savini
Maryam Seif
Alan C. Seifert
Alex K. Smith
Seth A. Smith
Zachary A. Smith
Elisabeth Solana
Yuichi Suzuki
George Tackley
Alexandra Tinnermann
Jan Valošek
Dimitri Van De Ville
Marios C. Yiannakas
K. Weber
Nikolaus Weiskopf
Richard G. Wise
Patrik O. Wyss
Junqian Xu