Portrait of Hadi Hojjati is unavailable

Hadi Hojjati

PhD - McGill University
Supervisor
Research Topics
Multimodal Learning

Publications

Unveiling the Flaws: A Critical Analysis of Initialization Effect on Time Series Anomaly Detection
Deep learning for time-series anomaly detection (TSAD) has gained significant attention over the past decade. Despite the reported improveme… (see more)nts in several papers, the practical application of these models remains limited. Recent studies have cast doubt on these models, attributing their results to flawed evaluation techniques. However, the impact of initialization has largely been overlooked. This paper provides a critical analysis of the initialization effects on TSAD model performance. Our extensive experiments reveal that TSAD models are highly sensitive to hyperparameters such as window size, seed number, and normalization. This sensitivity often leads to significant variability in performance, which can be exploited to artificially inflate the reported efficacy of these models. We demonstrate that even minor changes in initialization parameters can result in performance variations that overshadow the claimed improvements from novel model architectures. Our findings highlight the need for rigorous evaluation protocols and transparent reporting of preprocessing steps to ensure the reliability and fairness of anomaly detection methods. This paper calls for a more cautious interpretation of TSAD advancements and encourages the development of more robust and transparent evaluation practices to advance the field and its practical applications.
Unveiling the Flaws: A Critical Analysis of Initialization Effect on Time Series Anomaly Detection
Deep learning for time-series anomaly detection (TSAD) has gained significant attention over the past decade. Despite the reported improveme… (see more)nts in several papers, the practical application of these models remains limited. Recent studies have cast doubt on these models, attributing their results to flawed evaluation techniques. However, the impact of initialization has largely been overlooked. This paper provides a critical analysis of the initialization effects on TSAD model performance. Our extensive experiments reveal that TSAD models are highly sensitive to hyperparameters such as window size, seed number, and normalization. This sensitivity often leads to significant variability in performance, which can be exploited to artificially inflate the reported efficacy of these models. We demonstrate that even minor changes in initialization parameters can result in performance variations that overshadow the claimed improvements from novel model architectures. Our findings highlight the need for rigorous evaluation protocols and transparent reporting of preprocessing steps to ensure the reliability and fairness of anomaly detection methods. This paper calls for a more cautious interpretation of TSAD advancements and encourages the development of more robust and transparent evaluation practices to advance the field and its practical applications.
Unveiling the Flaws: A Critical Analysis of Initialization Effect on Time Series Anomaly Detection
Deep learning for time-series anomaly detection (TSAD) has gained significant attention over the past decade. Despite the reported improveme… (see more)nts in several papers, the practical application of these models remains limited. Recent studies have cast doubt on these models, attributing their results to flawed evaluation techniques. However, the impact of initialization has largely been overlooked. This paper provides a critical analysis of the initialization effects on TSAD model performance. Our extensive experiments reveal that TSAD models are highly sensitive to hyperparameters such as window size, seed number, and normalization. This sensitivity often leads to significant variability in performance, which can be exploited to artificially inflate the reported efficacy of these models. We demonstrate that even minor changes in initialization parameters can result in performance variations that overshadow the claimed improvements from novel model architectures. Our findings highlight the need for rigorous evaluation protocols and transparent reporting of preprocessing steps to ensure the reliability and fairness of anomaly detection methods. This paper calls for a more cautious interpretation of TSAD advancements and encourages the development of more robust and transparent evaluation practices to advance the field and its practical applications.
Self-supervised anomaly detection in computer vision and beyond: A survey and outlook.
Thi Kieu Khanh Ho
DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly Detection
Semi-supervised anomaly detection aims to detect anomalies from normal samples using a model that is trained on normal data. With recent adv… (see more)ancements in deep learning, researchers have designed efficient deep anomaly detection methods. Existing works commonly use neural networks to map the data into a more informative representation and then apply an anomaly detection algorithm. In this paper, we propose a method, DASVDD, that jointly learns the parameters of an autoencoder while minimizing the volume of an enclosing hyper-sphere on its latent representation. We propose an anomaly score which is a combination of autoencoder's reconstruction error and the distance from the center of the enclosing hypersphere in the latent representation. Minimizing this anomaly score aids us in learning the underlying distribution of the normal class during training. Including the reconstruction error in the anomaly score ensures that DASVDD does not suffer from the common hypersphere collapse issue since the DASVDD model does not converge to the trivial solution of mapping all inputs to a constant point in the latent representation. Experimental evaluations on several benchmark datasets show that the proposed method outperforms the commonly used state-of-the-art anomaly detection algorithms while maintaining robust performance across different anomaly classes.
Multivariate Time-Series Anomaly Detection with Temporal Self-supervision and Graphs: Application to Vehicle Failure Prediction
Mohammadreza Sadeghi