Traceability Network Analysis: A Case Study of Links in Issue Tracking Systems
Alexander Nicholson
Deeksha M. Arya
Traceability links between software artifacts serve as an invaluable resource for reasoning about software products and their development pr… (voir plus)ocess. Most conventional methods for capturing traceability are based on pair-wise artifact relations such as trace matrices or navigable links between two directly related artifacts. However, this limited view of trace links ignores the propagating effect of artifact connections as well as the trace link properties at a project level. In this work, we propose the use of network structures to provide another perspective from which reasoning on a collective of trace events is possible. We explore various network analysis techniques in the issue tracking system of sixty-six open source projects. Our observation reveals two salient properties of the traceability network, i.e. scale free and triadic closure. These properties provide a strong indication of the applicability of network analysis tools and can be used to identify and examine important "hub" issues. As a stepping stone, these properties can further support project status analysis and link type prediction. As a proof-of-concept, we demonstrate the effectiveness of applying the triadic closure property to link type prediction.
A Neural Network Based Approach to Domain Modelling Relationships and Patterns Recognition
Rijul Saini
Gunter Mussbacher
Jörg Kienzle
Model-Driven Software Engineering advocates the use of models and their transformations across different stages of software engineering to b… (voir plus)etter understand and analyze systems under development. Domain modelling is used during requirements analysis or the early stages of design to transform informal requirements written in natural language to domain models which are analyzable and more concise. Since domain modelling is time-consuming and requires modelling skills and experience, many approaches have been proposed to extract domain concepts and relationships automatically using extraction rules. However, relationships and patterns are often hidden in the sentences of a problem description. Automatic recognition of relationships or patterns in those cases requires context information and external knowledge of participating domain concepts, which goes beyond what is possible with extraction rules. In this paper, we draw on recent work on domain model extraction and envision a novel technique where sentence boundaries are customized and clusters of sentences are created for domain concepts. The technique further exploits a BiLSTM neural network model to identify relationships and patterns among domain concepts. We also present a classification strategy for relationships and patterns and use it to instantiate our technique. Preliminary results indicate that this novel idea is promising and warrants further research.
Information correspondence between types of documentation for APIs
Deeksha M. Arya
Martin P. Robillard
Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets
Marc-Andre Schulz
B.T. Thomas Yeo
Joshua T. Vogelstein
Janaina Mourao-Miranada
Jakob N. Kather
Konrad Paul Kording
BIAS: Transparent reporting of biomedical image analysis challenges
Lena Maier-Hein
Annika Reinke
Michal Kozubek
Anne L. Martel
Matthias Eisenmann
Allan Hanbury
Pierre Jannin
Henning Müller
Sinan Onogur
Julio Saez-Rodriguez
Bram van Ginneken
Annette Kopp-Schneider
Bennett Landman
Laplacian Change Point Detection for Dynamic Graphs
Shenyang Huang
Yasmeen Hitti
Fast reinforcement learning with generalized policy updates
Andre Barreto
Shaobo Hou
Diana Borsa
David Silver
The combination of reinforcement learning with deep learning is a promising approach to tackle important sequential decision-making problems… (voir plus) that are currently intractable. One obstacle to overcome is the amount of data needed by learning systems of this type. In this article, we propose to address this issue through a divide-and-conquer approach. We argue that complex decision problems can be naturally decomposed into multiple tasks that unfold in sequence or in parallel. By associating each task with a reward function, this problem decomposition can be seamlessly accommodated within the standard reinforcement-learning formalism. The specific way we do so is through a generalization of two fundamental operations in reinforcement learning: policy improvement and policy evaluation. The generalized version of these operations allow one to leverage the solution of some tasks to speed up the solution of others. If the reward function of a task can be well approximated as a linear combination of the reward functions of tasks previously solved, we can reduce a reinforcement-learning problem to a simpler linear regression. When this is not the case, the agent can still exploit the task solutions by using them to interact with and learn about the environment. Both strategies considerably reduce the amount of data needed to solve a reinforcement-learning problem.
Mastering Rate based Curriculum Learning
Lucas Willems
Salem Lahlou
Adaptive Learning of Tensor Network Structures
Meraj Hashemizadeh
Michelle Liu
Jacob Miller
Tensor Networks (TN) offer a powerful framework to efficiently represent very high-dimensional objects. TN have recently shown their potenti… (voir plus)al for machine learning applications and offer a unifying view of common tensor decomposition models such as Tucker, tensor train (TT) and tensor ring (TR). However, identifying the best tensor network structure from data for a given task is challenging. In this work, we leverage the TN formalism to develop a generic and efficient adaptive algorithm to jointly learn the structure and the parameters of a TN from data. Our method is based on a simple greedy approach starting from a rank one tensor and successively identifying the most promising tensor network edges for small rank increments. Our algorithm can adaptively identify TN structures with small number of parameters that effectively optimize any differentiable objective function. Experiments on tensor decomposition, tensor completion and model compression tasks demonstrate the effectiveness of the proposed algorithm. In particular, our method outperforms the state-of-the-art evolutionary topology search [Li and Sun, 2020] for tensor decomposition of images (while being orders of magnitude faster) and finds efficient tensor network structures to compress neural networks outperforming popular TT based approaches [Novikov et al., 2015].
Meta-matching: a simple framework to translate phenotypic predictive models from big to small data
Tong He
Lijun An
Jiashi Feng
Avram J. Holmes
Simon B. Eickhoff
B.T. Thomas Yeo
There is significant interest in using brain imaging data to predict non-brain-imaging phenotypes in individual participants. However, most … (voir plus)prediction studies are underpowered, relying on less than a few hundred participants, leading to low reliability and inflated prediction performance. Yet, small sample sizes are unavoidable when studying clinical populations or addressing focused neuroscience questions. Here, we propose a simple framework – “meta-matching” – to translate predictive models from large-scale datasets to new unseen non-brain-imaging phenotypes in boutique studies. The key observation is that many large-scale datasets collect a wide range inter-correlated phenotypic measures. Therefore, a unique phenotype from a boutique study likely correlates with (but is not the same as) some phenotypes in some large-scale datasets. Meta-matching exploits these correlations to boost prediction in the boutique study. We applied meta-matching to the problem of predicting non-brain-imaging phenotypes using resting-state functional connectivity (RSFC). Using the UK Biobank (N = 36,848), we demonstrated that meta-matching can boost the prediction of new phenotypes in small independent datasets by 100% to 400% in many scenarios. When considering relative prediction performance, meta-matching significantly improved phenotypic prediction even in samples with 10 participants. When considering absolute prediction performance, meta-matching significantly improved phenotypic prediction when there were least 50 participants. With a growing number of large-scale population-level datasets collecting an increasing number of phenotypic measures, our results represent a lower bound on the potential of meta-matching to elevate small-scale boutique studies.
Hidden population modes in social brain morphology: Its parts are more than its sum
Hannah Kiesow
R. Nathan Spreng
Avram J. Holmes
Mallar Chakravarty
Andre Marquand
B.T. Thomas Yeo
The complexity of social interactions is a defining property of the human species. Many social neuroscience experiments have sought to map … (voir plus)perspective taking’, ‘empathy’, and other canonical psychological constructs to distinguishable brain circuits. This predominant research paradigm was seldom complemented by bottom-up studies of the unknown sources of variation that add up to measures of social brain structure; perhaps due to a lack of large population datasets. We aimed at a systematic de-construction of social brain morphology into its elementary building blocks in the UK Biobank cohort (n=~10,000). Coherent patterns of structural co-variation were explored within a recent atlas of social brain locations, enabled through translating autoencoder algorithms from deep learning. The artificial neural networks learned rich subnetwork representations that became apparent from social brain variation at population scale. The learned subnetworks carried essential information about the co-dependence configurations between social brain regions, with the nucleus accumbens, medial prefrontal cortex, and temporoparietal junction embedded at the core. Some of the uncovered subnetworks contributed to predicting examined social traits in general, while other subnetworks helped predict specific facets of social functioning, such as feelings of loneliness. Our population-level evidence indicates that hidden subsystems of the social brain underpin interindividual variation in dissociable aspects of social lifestyle.
''COGITO in Space'': a thought experiment in exo-neurobiology
Daniela de Paulis
Stephen Whitmarsh
Robert Oostenveld
Michael Sanders