Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relation les décideur·euse·s avec des chercheur·euse·s de pointe en IA grâce à une combinaison de consultations ouvertes et d'exercices de test de faisabilité des politiques. La prochaine session aura lieu les 9 et 10 octobre.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
A portrait of the different configurations between digitally-enabled innovations and climate governance
Resampling is the process of selecting from a set of candidate samples to achieve a distribution (approximately) proportional to a desired t… (voir plus)arget. Recent work has revisited its application to Monte Carlo integration, yielding powerful and practical importance sampling methods. One drawback of existing resampling methods is that they cannot generate stratified samples. We propose two complementary techniques to achieve efficient stratified resampling. We first introduce bidirectional CDF sampling which yields the same result as conventional inverse CDF sampling but in a single pass over the candidates, without needing to store them, similarly to reservoir sampling. We then order the candidates along a space‐filling curve to ensure that stratified CDF sampling of candidate indices yields stratified samples in the integration domain. We showcase our method on various resampling‐based rendering problems.
To combat the increasingly versatile and mutable modern malware, Machine Learning (ML) is now a popular and effective complement to the exis… (voir plus)ting signature-based techniques for malware triage and identification. However, ML is also a readily available tool for adversaries. Recent studies have shown that malware can be modified by deep Reinforcement Learning (RL) techniques to bypass AI-based and signature-based anti-virus systems without altering their original malicious functionalities. These studies only focus on generating evasive samples and assume a static detection system as the enemy.Malware detection and evasion essentially form a two-party cat-and-mouse game. Simulating the real-life scenarios, in this paper we present the first two-player competitive game for evasive malware detection and generation, following the zero-sum Multi-Agent Reinforcement Learning (MARL) paradigm. Our experiments on recent malware show that the produced malware detection agent is more robust against adversarial attacks. Also, the produced malware modification agent is able to generate more evasive samples fooling both AI-based and other anti-malware techniques.
Adoption of recently developed methods from machine learning has given rise to creation of drug-discovery knowledge graphs (KGs) that utiliz… (voir plus)e the interconnected nature of the domain. Graph-based modelling of the data, combined with KG embedding (KGE) methods, are promising as they provide a more intuitive representation and are suitable for inference tasks such as predicting missing links. One common application is to produce ranked lists of genes for a given disease, where the rank is based on the perceived likelihood of association between the gene and the disease. It is thus critical that these predictions are not only pertinent but also biologically meaningful. However, KGs can be biased either directly due to the underlying data sources that are integrated or due to modelling choices in the construction of the graph, one consequence of which is that certain entities can get topologically overrepresented. We demonstrate the effect of these inherent structural imbalances, resulting in densely connected entities being highly ranked no matter the context. We provide support for this observation across different datasets, models as well as predictive tasks. Further, we present various graph perturbation experiments which yield more support to the observation that KGE models can be more influenced by the frequency of entities rather than any biological information encoded within the relations. Our results highlight the importance of data modelling choices, and emphasizes the need for practitioners to be mindful of these issues when interpreting model outputs and during KG composition.
We explore the downstream task performances for graph neural network (GNN) self-supervised learning (SSL) methods trained on subgraphs extra… (voir plus)cted from relational databases (RDBs). Intu-itively, this joint use of SSL and GNNs allows us to leverage more of the available data, which could translate to better results. However, while we observe positive transfer in some cases, others showed systematic performance degradation, including some spectacular ones. We hypothesize a mechanism that could explain this behaviour and draft the plan for future work testing it by characterizing how much relevant information different strategies can (theoretically and/or empirically) extract from (synthetic and/or real) RDBs.