Dissecting the phenotypic heterogeneity in sensory features in autism spectrum disorder: a factor mixture modelling approach
Julian Tillmann
M. Uljarevic
Daisy Crawley
G. Dumas
Eva Loth
D. Murphy
J. Buitelaar
Tony Charman
Jumana Sara Bonnie Sarah Christian Thomas Carsten Michael Daniel Claudia Yvette Bhismadev Ineke Flavio Dell’ Guillaume Christine Jessica Vincent Pilar David Hannah Joerg Mark H. Emily J. H. Prantik Meng-Chuan Xavier Liogier Michael David J. René Luke Andreas Carolin Nico Laurence Marianne Bob Gahan Antonio M. Barbara Amber Jessica Roberto Roberto Heike Jack Steve C. R. Caroline Marcel P. Ahmad
Jumana Sara Bonnie Sarah Christian Thomas Carsten Michael Ahmad Ambrosino Auyeung Baumeister Beckmann Bourge
Jumana Ahmad
Sara Ambrosino
Bonnie Auyeung
Sarah Baumeister
Christian Beckmann
Thomas Bourgeron
Carsten Bours
Michael Brammer
Daniel Brandeis
Claudia Brogna … (voir 39 de plus)
Yvette de Bruijn
Bhismadev Chakrabarti
Ineke Cornelissen
Flavio Dell’ Acqua
Christine Ecker
Jessica Faulkner
Vincent Frouin
Pilar Garcés
David Goyard
Hannah Hayward
Joerg F. Hipp
Mark Johnson
Emily J. H. Jones
Prantik Kundu
Meng-Chuan Lai
Xavier Liogier D’ardhuy
Michael V. Lombardo
David J. Lythgoe
René Mandl
Luke Mason
Andreas Meyer-Lindenberg
Carolin Moessnang
Nico Mueller
Laurence O’Dwyer
Marianne Oldehinkel
Bob Oranje
Gahan Pandina
Antonio Persico
Barbara Ruggeri
Amber N. V. Ruigrok
Jessica Sabet
Roberto Sacco
Roberto Toro
Heike Tost
Jack Waldman
Steve C. R. Williams
Caroline Wooldridge
Marcel P. Zwiers
RandomNet: Towards Fully Automatic Neural Architecture Design for Multimodal Learning
Stefano Alletto
Shenyang Huang
Vincent Francois-Lavet
Yohei Nakata
Almost all neural architecture search methods are evaluated in terms of performance (i.e. test accuracy) of the model structures that it fin… (voir plus)ds. Should it be the only metric for a good autoML approach? To examine aspects beyond performance, we propose a set of criteria aimed at evaluating the core of autoML problem: the amount of human intervention required to deploy these methods into real world scenarios. Based on our proposed evaluation checklist, we study the effectiveness of a random search strategy for fully automated multimodal neural architecture search. Compared to traditional methods that rely on manually crafted feature extractors, our method selects each modality from a large search space with minimal human supervision. We show that our proposed random search strategy performs close to the state of the art on the AV-MNIST dataset while meeting the desirable characteristics for a fully automated design process.
Tensor Networks for Language Modeling
Jacob Miller
John Anthony Terilla
The tensor network formalism has enjoyed over two decades of success in modeling the behavior of complex quantum-mechanical systems, but has… (voir plus) only recently and sporadically been leveraged in machine learning. Here we introduce a uniform matrix product state (u-MPS) model for probabilistic modeling of sequence data. We identify several distinctive features of this recurrent generative model, notably the ability to condition or marginalize sampling on characters at arbitrary locations within a sequence, with no need for approximate sampling methods. Despite the sequential architecture of u-MPS, we show that a recursive evaluation algorithm can be used to parallelize its inference and training, with a string of length n only requiring parallel time
Tensor Networks for Probabilistic Sequence Modeling
Jacob Miller
John Anthony Terilla
Tensor networks are a powerful modeling framework developed for computational many-body physics, which have only recently been applied withi… (voir plus)n machine learning. In this work we utilize a uniform matrix product state (u-MPS) model for probabilistic modeling of sequence data. We first show that u-MPS enable sequence-level parallelism, with length-n sequences able to be evaluated in depth O(log n). We then introduce a novel generative algorithm giving trained u-MPS the ability to efficiently sample from a wide variety of conditional distributions, each one defined by a regular expression. Special cases of this algorithm correspond to autoregressive and fill-in-the-blank sampling, but more complex regular expressions permit the generation of richly structured text in a manner that has no direct analogue in current generative models. Experiments on synthetic text data find u-MPS outperforming LSTM baselines in several sampling tasks, and demonstrate strong generalization in the presence of limited data.
Tensor Networks for Probabilistic Sequence Modeling
Jacob Miller
John Anthony Terilla
Tensor networks are a powerful modeling framework developed for computational many-body physics, which have only recently been applied withi… (voir plus)n machine learning. In this work we utilize a uniform matrix product state (u-MPS) model for probabilistic modeling of sequence data. We first show that u-MPS enable sequence-level parallelism, with length-n sequences able to be evaluated in depth O(log n). We then introduce a novel generative algorithm giving trained u-MPS the ability to efficiently sample from a wide variety of conditional distributions, each one defined by a regular expression. Special cases of this algorithm correspond to autoregressive and fill-in-the-blank sampling, but more complex regular expressions permit the generation of richly structured text in a manner that has no direct analogue in current generative models. Experiments on synthetic text data find u-MPS outperforming LSTM baselines in several sampling tasks, and demonstrate strong generalization in the presence of limited data.
Seven pillars of precision digital health and medicine
Arash Shaban-Nejad
Martin Michalowski
Niels Peek
John S. Brownstein
On the Morality of Artificial Intelligence
Alexandra Luccioni
Examines ethical principles and guidelines that surround machine learning and artificial intelligence.
On Catastrophic Interference in Atari 2600 Games
William Fedus
Dibya Ghosh
John D. Martin
Model-free deep reinforcement learning is sample inefficient. One hypothesis -- speculated, but not confirmed -- is that catastrophic interf… (voir plus)erence within an environment inhibits learning. We test this hypothesis through a large-scale empirical study in the Arcade Learning Environment (ALE) and, indeed, find supporting evidence. We show that interference causes performance to plateau; the network cannot train on segments beyond the plateau without degrading the policy used to reach there. By synthetically controlling for interference, we demonstrate performance boosts across architectures, learning algorithms and environments. A more refined analysis shows that learning one segment of a game often increases prediction errors elsewhere. Our study provides a clear empirical link between catastrophic interference and sample efficiency in reinforcement learning.
Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia
Sameer Sardaar
Bill Qi
Alexandre Dionne-Laporte
Guy. A. Rouleau
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
Issam Hadj Laradji
We propose a stochastic variant of the classical Polyak step-size (Polyak, 1987) commonly used in the subgradient method. Although computing… (voir plus) the Polyak step-size requires knowledge of the optimal function values, this information is readily available for typical modern machine learning applications. Consequently, the proposed stochastic Polyak step-size (SPS) is an attractive choice for setting the learning rate for stochastic gradient descent (SGD). We provide theoretical convergence guarantees for SGD equipped with SPS in different settings, including strongly convex, convex and non-convex functions. Furthermore, our analysis results in novel convergence guarantees for SGD with a constant step-size. We show that SPS is particularly effective when training over-parameterized models capable of interpolating the training data. In this setting, we prove that SPS enables SGD to converge to the true solution at a fast rate without requiring the knowledge of any problem-dependent constants or additional computational overhead. We experimentally validate our theoretical results via extensive experiments on synthetic and real datasets. We demonstrate the strong performance of SGD with SPS compared to state-of-the-art optimization methods when training over-parameterized models.
Neural Bayes: A Generic Parameterization Method for Unsupervised Representation Learning
Devansh Arpit
Huan Wang
Caiming Xiong
Richard Socher
The Geometry of Sign Gradient Descent
Lukas Balles
Fabian Pedregosa