PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design
Alexandre AGM Duval
Victor Schmidt
Santiago Miret
Alex Hernandez-Garcia
Mitigating the climate crisis requires a rapid transition towards lower-carbon energy. Catalyst materials play a crucial role in the electro… (voir plus)chemical reactions involved in numerous industrial processes key to this transition, such as renewable energy storage and electrofuel synthesis. To reduce the energy spent on such activities, we must quickly discover more efficient catalysts to drive electrochemical reactions. Machine learning (ML) holds the potential to efficiently model materials properties from large amounts of data, accelerating electrocatalyst design. The Open Catalyst Project OC20 dataset was constructed to that end. However, ML models trained on OC20 are still neither scalable nor accurate enough for practical applications. In this paper, we propose task-specific innovations applicable to most architectures, enhancing both computational efficiency and accuracy. This includes improvements in (1) the graph creation step, (2) atom representations, (3) the energy prediction head, and (4) the force prediction head. We describe these contributions, referred to as PhAST, and evaluate them thoroughly on multiple architectures. Overall, PhAST improves energy MAE by 4 to 42
SMPL-IK: Learned Morphology-Aware Inverse Kinematics for AI Driven Artistic Workflows
Vikram Voleti
Boris Oreshkin
Florent Bocquelet
Félix Harvey
Louis-Simon Ménard
Assessing the potential for virtualizable care in the pediatric emergency department.
Esli Osmanlliu
Brett Burstein
Robyn Tamblyn
INTRODUCTION There is increasing interest for patient-to-provider telemedicine in pediatric acute care. The suitability of telemedicine (vir… (voir plus)tualizability) for visits in this setting has not been formally assessed. We estimated the proportion of in-person pediatric emergency department (PED) visits that were potentially virtualizable, and identified factors associated with virtualizable care. METHODS This was a retrospective analysis of in-person visits at the PED of a Canadian tertiary pediatric hospital (02/2018-12/2019). Three definitions of virtualizable care were developed: (1) a definition based on "resource use" classifying visits as virtualizable if they resulted in a home discharge, no diagnostic testing, and no return visit within 72 h; (2) a "diagnostic definition" based on primary ED diagnosis; and (3) a stringent "combined definition" by which visits were classified as virtualizable if they met both the resource use and diagnostic definitions. Multivariable logistic regression was used to identify factors associated with telemedicine suitability. RESULTS There were 130,535 eligible visits from 80,727 individual patients during the study period. Using the most stringent combined definition of telemedicine suitability, 37.9% (95% confidence interval (CI) 37.6%-38.2%) of in-person visits were virtualizable. Overnight visits (adjusted odds ratio (aOR) 1.16-1.37), non-Canadian citizenship (aOR 1.10-1.18), ethnocultural vulnerability (aOR 1.14-1.22), and a consultation for head trauma (aOR 3.50-4.60) were associated with higher telemedicine suitability across definitions. DISCUSSION There is a high potential for patient-to-provider telemedicine in the PED setting. Local patient and visit-level characteristics must be considered in the design of safe and inclusive telemedicine models for pediatric acute care.
Learning from uncertain concepts via test time interventions
Ivaxi Sheth
Aamer Abdul Rahman
Laya Rafiee Sevyeri
Mohammad Havaei
With neural networks applied to safety-critical applications, it has become increasingly important to understand the defining features of de… (voir plus)cision-making. Therefore, the need to uncover the black boxes to rational representational space of these neural networks is apparent. Concept bottleneck model (CBM) encourages interpretability by predicting human-understandable concepts. They predict concepts from input images and then labels from concepts. Test time intervention, a salient feature of CBM, allows for human-model interactions. However, these interactions are prone to information leakage and can often be ineffective inappropriate communication with humans. We propose a novel uncertainty based strategy, \emph{SIUL: Single Interventional Uncertainty Learning} to select the interventions. Additionally, we empirically test the robustness of CBM and the effect of SIUL interventions under adversarial attack and distributional shift. Using SIUL, we observe that the interventions suggested lead to meaningful corrections along with mitigation of concept leakage. Extensive experiments on three vision datasets along with a histopathology dataset validate the effectiveness of our interventional learning.
Striving for data-model efficiency: Identifying data externalities on group performance
Esther Rolf
Ben Packer
Alex Beutel
GPS++: An Optimised Hybrid MPNN/Transformer for Molecular Property Prediction
Dominic Masters
Josef Dean
Kerstin Klaser
Zhiyi Li
Samuel Maddrell-Mander
Adam Sanders
Hatem Helal
Deniz Beker
Ladislav Rampášek
APP: Anytime Progressive Pruning
Diganta Misra
Bharat Runwal
Tianlong Chen
Zhangyang Wang
With the latest advances in deep learning, several methods have been investigated for optimal learning settings in scenarios where the data … (voir plus)stream is continuous over time. However, training sparse networks in such settings has often been overlooked. In this paper, we explore the problem of training a neural network with a target sparsity in a particular case of online learning: the anytime learning at macroscale paradigm (ALMA). We propose a novel way of progressive pruning, referred to as \textit{Anytime Progressive Pruning} (APP); the proposed approach significantly outperforms the baseline dense and Anytime OSP models across multiple architectures and datasets under short, moderate, and long-sequence training. Our method, for example, shows an improvement in accuracy of
The Liver Tumor Segmentation Benchmark (LiTS)
Patrick Bilic
Patrick Christ
Eugene Vorontsov
Hongwei Bran Li
Grzegorz Chlebus
Hao Chen
Qi Dou
Chi-Wing Fu
Xu Han
Gabriel Efrain Humpire Mamani
Pheng Ann Heng
Jürgen Hesser
Samuel Kadoury
Julian Walter Holch
Tomasz Konopczynski
Miao Yue
Chunming Li
X. Li
Jana Lipková
John Lowengrub … (voir 99 de plus)
Michal Marianne Amitai
Hans Meine
J. Moltz
Marie Piraud
Ivan Ezhov
Xiaojuan Qi
Fernando Navarro
Jin Qi
Florian Kofler
Markus Rempfler
Johannes C. Paetzold
Karsten Roth
Suprosanna Shit
Andrea Schenk
Xiaobin Hu
Anjany Sekuboyina
Ping Zhou
Christian Hülsemeyer
Marcel Beetz
Jan Kirschke
Florian Ettlinger
Felix Gruen
Benedikt Wiestler
Zhiheng Zhang
Georgios Kaissis
Fabian Lohöfer
Rickmer Braren
J. Holch
Michela Antonelli
Felix Hofmann
Woong Bae
Wieland Sommer
Míriam Bellver
Volker Heinemann
Lei Bi
Colin Jacobs
G. Mamani
Bram van Ginneken
Erik B. Dam
Gabriel Chartrand
An Tang
Michal Drozdzal
Bogdan Georgescu
Avi Ben-Cohen
Xavier Giró-i-Nieto
Eyal Klang
M. Amitai
E. Konen
Hayit Greenspan
Johan Moreau
Jan Hendrik Moltz
Alexandre Hostettler
Christian Igel
Luc Soler
Fabian Isensee
Refael Vivanti
Paul Jäger
Adi Szeskin
Fucang Jia
Naama Lev-Cohain
Krishna Chaitanya Kaluva
Jacob Sosna
Mahendra Khened
Leo Joskowicz
Ildoo Kim
Bjoern Menze
Jae-Hun Kim
Zengming Shen
Sungwoong Kim
Simon Kohl
Avinash Kori
Ganapathy Krishnamurthi
Fan Li
Hongchao Li
Junbo Li
Xiaomeng Li
Jun Ma
Klaus Maier-Hein
Kevis-Kokitsi Maninis
Dorit Merhof
Akshay Pai
Mathias Perslev
Jens Petersen
Jordi Pont-Tuset
Oliver Rippel
Ignacio Sarasua
Jordi Torres
Christian Wachinger
Chunliang Wang
Leon Weninger
Jianrong Wu
Daguang Xu
Xiaoping Yang
Simon Chun-Ho Yu
Yading Yuan
Liping Zhang
Jorge Cardoso
Spyridon Bakas
Clinically Plausible Pathology-Anatomy Disentanglement in Patient Brain MRI with Structured Variational Priors
Anjun Hu
Jean-Pierre R. Falet
Brennan Nichyporuk
Changjian Shui
Douglas Arnold
Sotirios A. Tsaftaris
We propose a hierarchically structured variational inference model for accurately disentangling observable evidence of disease (e.g. brain l… (voir plus)esions or atrophy) from subject-specific anatomy in brain MRIs. With flexible, partially autoregressive priors, our model (1) addresses the subtle and fine-grained dependencies that typically exist between anatomical and pathological generating factors of an MRI to ensure the clinical validity of generated samples; (2) preserves and disentangles finer pathological details pertaining to a patient's disease state. Additionally, we experiment with an alternative training configuration where we provide supervision to a subset of latent units. It is shown that (1) a partially supervised latent space achieves a higher degree of disentanglement between evidence of disease and subject-specific anatomy; (2) when the prior is formulated with an autoregressive structure, knowledge from the supervision can propagate to the unsupervised latent units, resulting in more informative latent representations capable of modelling anatomy-pathology interdependencies.
On the Compositional Generalization Gap of In-Context Learning
Pretrained large generative language models have shown great performance on many tasks, but exhibit low compositional generalization abiliti… (voir plus)es. Scaling such models has been shown to improve their performance on various NLP tasks even just by conditioning them on a few examples to solve the task without any fine-tuning (also known as in-context learning). In this work, we look at the gap between the in-distribution (ID) and out-of-distribution (OOD) performance of such models in semantic parsing tasks with in-context learning. In the ID settings, the demonstrations are from the same split (\textit{test} or \textit{train}) that the model is being evaluated on, and in the OOD settings, they are from the other split. We look at how the relative generalization gap of in-context learning evolves as models are scaled up. We evaluate four model families, OPT, BLOOM, CodeGen and Codex on three semantic parsing datasets, CFQ, SCAN and GeoQuery with different number of exemplars, and observe a trend of decreasing relative generalization gap as models are scaled up.
NeurIPS 2022 Competition: Driving SMARTS
Amir Hossein Rasouli
R. Goebel
Matthew E. Taylor
Iuliia Kotseruba
Soheil Alizadeh
Tianpei Yang
Montgomery Alban
Florian Shkurti
Yuzheng Zhuang
Adam Ścibior
Kasra Rezaee
Animesh Garg
Jun Luo
Weinan Zhang
Xinyu Wang
Xiangshan Chen
PatchBlender: A Motion Prior for Video Transformers
Gabriele Prato
Yale Song
Janarthanan Rajendran
Neel Joshi