Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Bayes-MIL: A New Probabilistic Perspective on Attention-based Multiple Instance Learning for Whole Slide Images
Multiple instance learning (MIL) is a popular weakly-supervised learning model on the whole slide image (WSI) for AI-assisted pathology diag… (voir plus)nosis. The recent advance in attention-based MIL allows the model to find its region-of-interest (ROI) for interpretation by learning the attention weights for image patches of WSI slides. However, we empirically find that the interpretability of some related methods is either untrustworthy as the principle of MIL is violated or unsatisfactory as the high-attention regions are not consistent with experts’ annotations. In this paper, we propose Bayes-MIL to address the problem from a probabilistic perspective. The induced patch-level uncertainty is proposed as a new measure of MIL interpretability, which outperforms previous methods in matching doctors annotations. We design a slide-dependent patch regularizer (SDPR) for the attention, imposing constraints derived from the MIL assumption, on the attention distribution. SDPR explicitly constrains the model to generate correct attention values. The spatial information is further encoded by an approximate convolutional conditional random field (CRF), for better interpretability. Experimental results show Bayes-MIL outperforms the related methods in patch-level and slide-level metrics and provides much better interpretable ROI on several large-scale WSI datasets.
2023-01-01
International Conference on Learning Representations (published)
Multiple instance learning (MIL) is a popular weakly-supervised learning model on the whole slide image (WSI) for AI-assisted pathology diag… (voir plus)nosis. The recent advance in attention-based MIL allows the model to find its region-of-interest (ROI) for interpretation by learning the attention weights for image patches of WSI slides. However, we empirically find that the interpretability of some related methods is either untrustworthy as the principle of MIL is violated or unsatisfactory as the high-attention regions are not consistent with experts’ annotations. In this paper, we propose Bayes-MIL to address the problem from a probabilistic perspective. The induced patch-level uncertainty is proposed as a new measure of MIL interpretability, which outperforms previous methods in matching doctors annotations. We design a slide-dependent patch regularizer (SDPR) for the attention, imposing constraints derived from the MIL assumption, on the attention distribution. SDPR explicitly constrains the model to generate correct attention values. The spatial information is further encoded by an approximate convolutional conditional random field (CRF), for better interpretability. Experimental results show Bayes-MIL outperforms the related methods in patch-level and slide-level metrics and provides much better interpretable ROI on several large-scale WSI datasets.
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (voir plus) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (voir plus) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (voir plus) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (voir plus) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (voir plus) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (voir plus) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (voir plus) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on sca… (voir plus)ling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/bigger_better_faster.